Protein surfaces defects act as drug targets

Jul 30, 2013
Protein surfaces defects act as drug targets

New research shows a physical characterisation of the interface of the body's proteins with water. Identifying the locations where it is easiest to remove water from the interface of target proteins could constitute a novel drug design strategy. The candidate drugs would need to be engineered to bind at the site of the protein where interfacial water is most easily dislodged. These findings, based on the work of María Belén Sierra from the National University of the South, in Bahia Blanca, Argentina and colleagues, were recently published in EPJ E.

The challenge is to describe the protein-water interface without a nanoscale model for water. Previous research tended to regard water as a continuum medium even at interfaces. However, these are inadequate for nanometric scale events occurring on the protein surfaces. Instead, the authors prefer a discrete model describing ' partial confinement on the proteins' surface.

Belén Sierra and colleagues pursued a novel strategy for correlating interfacial water mobility with so-called packing defects in the protein structure. Proteins typically fold in ways that will keep part of their interface with water dry, in order to carry out their biological function. However, some of the paper's authors have previously discovered that the protein's water seal typically has some defects, called dehydrons. These are like crevices on the permitting access to water molecules.

The water molecules become heated up because they cannot interact with their neighbours as fully as they do in bulk water. These interfacial water molecules are thus unstable and easily expelled. The authors' findings thus pinpoint the exact location of these unstable water molecules. This, in turn, could be useful in selecting future drug candidates that would dislodge these water molecules upon association with the protein on the defect sites.

Explore further: Towards controlled dislocations

More information: M. Belén Sierra et al. (2013), Protein packing defects "heat up" interfacial water, European Physical Journal E 36: 62, DOI 10.1140/epje/i2013-13062-7

add to favorites email to friend print save as pdf

Related Stories

How do protein binding sites stay dry in water?

Oct 21, 2011

In a report to be published soon in EPJE¹, researchers from the National University of the South in Bahía Blanca, Argentina studied the condition for model cavity and tunnel structures resembling the binding sites ...

Long distance calls by sugar molecules

Jun 18, 2013

All our cells wear a coat of sugar molecules, so-called glycans. ETH Zurich and Empa researchers have now discovered that glycans rearrange water molecules over long distances. This may have an effect on ...

Water, water everywhere—but is it essential to life?

Apr 13, 2012

Proteins are large organic molecules that are vital to every living thing, allowing us to convert food into energy, supply oxygen to our blood and muscles, and drive our immune systems. Since proteins evolved in a water-rich ...

Recommended for you

Towards controlled dislocations

12 hours ago

Crystallographic defects or irregularities (known as dislocations) are often found within crystalline materials. Two main types of dislocation exist: edge and screw type. However, dislocations found in real ...

Chemists tackle battery overcharge problem

Oct 17, 2014

Research from the University of Kentucky Department of Chemistry will help batteries resist overcharging, improving the safety of electronics from cell phones to airplanes.

Surface properties command attention

Oct 17, 2014

Whether working on preventing corrosion for undersea oil fields and nuclear power plants, or for producing electricity from fuel cells or oxygen from electrolyzers for travel to Mars, associate professor ...

User comments : 0