Optics: A step in time saves two

Jul 17, 2013
Optics: A step in time saves two
An efficient FDTD simulation can quickly calculate the electric and magnetic field patterns inside a nanocavity laser. Credit: IEEE

A technique that reduces the time to simulate the operation of active optical devices aids the design of nanoscale lasers.

Tiny optical components—the heart of modern communications systems—might one day increase the operational speed of computers. When designing these components, optical engineers rely on mathematical simulations to predict the performance and efficiency of potential devices. Now, Qian Wang at the A*STAR Data Storage Institute and co?workers have developed a neat mathematical trick that more than doubles the speed of this usually slow computation1. Their method also enables more accurate modeling of increasingly complicated structures.

In the mid-nineteenth century, the physicist James Maxwell established a set of equations that describe the flow of light. The oscillating electric and magnetic fields of an react to the optical properties of the medium through which it is travelling. "Combining Maxwell's equations with equations that describe light–matter interactions can provide a powerful simulation platform for ," explains Wang. "However, running the computations is usually time-consuming."

Finite-difference time-domain (FDTD) simulations are a well-established method for modeling the flow of light in . This technique models a device as a grid of points and then calculates the electric and magnetic fields at each position using both Maxwell's equations and knowledge of the fields at neighboring points. Similarly, calculating the time evolution of light using Maxwell's equations is simplified by considering discrete temporal steps. Smaller spatial and temporal steps yield more accurate results but at the expense of a longer calculation time.

Electron density in a semiconductor is a key determiner of a material's optical properties. This density varies at a slower rate than the electric and magnetic fields of the optical pulse. Wang and his colleagues therefore eliminated calculation of this material property at every time step to shorten the calculation.

The researchers proved the usefulness of their approach by modeling a semiconductor laser, consisting of a cylindrical cavity 2 micrometers in diameter that traps light at its edges (see image). The trapped light supplies the optical feedback required for lasing. They simulated the operation of this device using an FDTD spatial grid with a 20-nanometer resolution and 0.033 femtosecond time steps. The calculated field pattern in the cavity was the same whether the active of the semiconductor were calculated at every time increment, or once every 100 steps. Yet, this simplification reduced the computation time by a factor of 2.2.

"Currently we are applying our approach to design integrated nanolasers as a next-generation on-chip light source for various applications," says Wang.

Explore further: LCD technology maintains 3D images it displays without drawing power

More information: IEEE Photonics Technology Letters 24, 584–586 (2012). doi: 10.1109/LPT.2012.2183865

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Scientists develop compact medical imaging device

2 hours ago

Scientists at the MIRA research institute, in collaboration with various companies, have developed a prototype of a handy device that combines echoscopy (ultrasound) with photoacoustics. Combining these two ...

A 'Star Wars' laser bullet

Oct 22, 2014

Action-packed science-fiction movies often feature colourful laser bolts. But what would a real laser missile look like during flight, if we could only make it out? How would it illuminate its surroundings? ...

User comments : 0