Navy turns to UAVs for help with radar, communications

Jul 31, 2013 by Eric Beidel
Adam Broad from Naval Surface Warfare Center Dahlgren prepares a ScanEagle unmanned aerial vehicle (UAV) aboard the research vessel Knorr in Norfolk, Va., in preparation for Trident Warrior 2013 (TW13). As part of TW13 the Office of Naval Research sponsored the UAVs aboard Knorr during the Naval Warfare Development Command's advanced field experimentation series designed to put new or improved capabilities into the hands of the Fleet for evaluation in an operational environment. Credit: US Navy photo by John F. Williams

Scientists recently launched unmanned aerial vehicles (UAVs) from a research vessel in a significant experiment that could help boost the Navy's radar and communications performance at sea.

Sailing off Virginia Beach, Va., from July 13 to 18, the Office of Naval Research's (ONR) Research Vessel (R/V) Knorr explored ocean and atmospheric weather variations that can change the angle that radar and bend, making it more difficult for ships to remain undetected and hindering their ability to communicate or locate adversaries.

Sponsored by ONR's Ocean Battlespace Sensing Department and the Oceanographer of the Navy, the initiative was part of Trident Warrior—a large annual fleet experiment organized by Navy Warfare Development Command.

Researchers used ONR-owned ScanEagle UAVs—along with unmanned undersea and surface vehicles—to obtain accurate, real-time measurements of variations in atmospheric and . Fluxes and turbulence caused by the interaction between the air and sea can significantly alter the path of in radar and communications systems.

Atmospheric "ducts" can trap energy in the lowest layer of the atmosphere, allowing radar and communications to travel over much longer distances, increasing the chances that information could reach unintended audiences. Energy also could be trapped aloft, preventing Navy radars from seeing things even if they normally would be well within range.

"We need to understand where we are in relation to this ducting environment and understand the energy we're emitting and the energy an adversary is emitting," said Dr. Dan Eleuterio, program officer for ONR's Ocean Battlespace Sensing Department. "If we don't know these things, it's like rolling the dice. If we do know them, it can give us a tactical advantage."

Smaller, light are ideal for the task, because they can launch from a ship, get close to the ocean's surface and fly for extended periods of time. During the experiment, the UAVs flew as close as 100 feet above the ocean's surface, allowing for more precise measurements.

Developed by the Marine Physical Laboratory at Scripps Institution of Oceanography, the sensor packages used on the ScanEagles measured everything from surface waves, winds, humidity and temperature to fluxes in mass, momentum and energy. Once collected, the data was delivered to personnel aboard a destroyer and an amphibious assault ship participating in the experiment.

"In the old days, we launched weather balloons to give us the best data on the real environment, but that only happened in one place and at one time of day," said Cmdr. Rob Witzleb, head of capabilities and requirements on the staff of the Oceanographer of the Navy. "Many miles and hours later, we were often left looking for answers when weapon systems didn't perform the way we thought they would. Using UAVs is giant leap forward in that they can give us near-continuous data, across multiple parameters where the atmosphere is the most unpredictable."

The recent research aboard R/V Knorr is in keeping with Chief of Naval Operations Adm. Jonathan Greenert's call for the Navy to expand the reach of its sensors and platforms with unmanned and autonomous systems. He has described these assets as critical for the Navy to dominate the new arenas of the electromagnetic spectrum and cyberspace.

In addition to ONR and Scripps, the experiment aboard R/V Knorr included representatives from the Naval Research Laboratory, Naval Surface Warfare Center Dahlgren, Space and Naval Warfare Systems Center Pacific, Naval Postgraduate School, Oregon State University and the Woods Hole Oceanographic Institute, which operates the , also part of the University-National Oceanographic Laboratory System.

Explore further: Comfortable climate indoors with porous glass

add to favorites email to friend print save as pdf

Related Stories

ONR pursuing affordable common radar for surface ships

Sep 21, 2011

To upgrade the Navy's fleet of aging combat ship radar systems, the Office of Naval Research (ONR) is developing technologies that will combat the obsolescence of surveillance systems at a more affordable cost.

Recommended for you

Comfortable climate indoors with porous glass

10 hours ago

Proper humidity and temperature play a key role in indoor climate. In the future, establishing a comfortable indoor environment may rely on porous glass incorporated into plaster, as this regulates moisture ...

Crash-testing rivets

10 hours ago

Rivets have to reliably hold the chassis of an automobile together – even if there is a crash. Previously, it was difficult to predict with great precision how much load they could tolerate. A more advanced ...

Customized surface inspection

10 hours ago

The quality control of component surfaces is a complex undertaking. Researchers have engineered a high-precision modular inspection system that can be adapted on a customer-specific basis and integrated into ...

Sensors that improve rail transport safety

11 hours ago

A new kind of human-machine communication is to make it possible to detect damage to rail vehicles before it's too late and service trains only when they need it – all thanks to a cloud-supported, wireless ...

Tiny UAVs and hummingbirds are put to test

Jul 30, 2014

Hummingbirds in nature exhibit expert engineering skills, the only birds capable of sustained hovering. A team from the US, British Columbia, and the Netherlands have completed tests to learn more about the ...

User comments : 0