NASA engineer achieves another milestone in emerging nanotechnology (w/ Video)

Jul 17, 2013
NASA engineer achieves another milestone in emerging nanotechnology
Lachlan Hyde, an expert in atomic layer deposition at Australia's Melbourne Centre for Nanofabrication, works with one of the organization's two ALD systems. Credit: MCN

A NASA engineer has achieved yet another milestone in his quest to advance an emerging super-black nanotechnology that promises to make spacecraft instruments more sensitive without enlarging their size.

A team led by John Hagopian, an optics engineer at NASA's Goddard Space Flight Center in Greenbelt, Md., has demonstrated that it can grow a uniform layer of carbon nanotubes through the use of another emerging technology called or ALD. The marriage of the two technologies now means that NASA can grow nanotubes on three-dimensional components, such as complex baffles and tubes commonly used in optical instruments.

"The significance of this is that we have new tools that can make NASA instruments more sensitive without making our telescopes bigger and bigger," Hagopian said. "This demonstrates the power of nanoscale technology, which is particularly applicable to a new class of less-expensive tiny satellites called Cubesats that NASA is developing to reduce the cost of ."

Since beginning his research and development effort five years ago, Hagopian and his team have made significant strides applying the carbon-nanotube technology to a number of spaceflight applications, including, among other things, the suppression of stray light that can overwhelm faint signals that sensitive detectors are supposed to retrieve.

Super Absorbency

During the research, Hagopian tuned the nano-based super-black material, making it ideal for this application, absorbing on average more than 99 percent of the ultraviolet, visible, infrared and far-infrared light that strikes it—a never-before-achieved milestone that now promises to open new frontiers in scientific discovery. The material consists of a thin coating of multi-walled carbon nanotubes about 10,000 times thinner than a strand of human hair.

This video is not supported by your browser at this time.

Once a laboratory novelty grown only on silicon, the NASA team now grows these forests of vertical carbon tubes on commonly used spacecraft materials, such as titanium, copper and stainless steel. Tiny gaps between the tubes collect and trap light, while the carbon absorbs the photons, preventing them from reflecting off surfaces. Because only a small fraction of light reflects off the coating, the human eye and sensitive detectors see the material as black.

Before growing this forest of nanotubes on instrument parts, however, materials scientists must first deposit a highly uniform foundation or catalyst layer of iron oxide that supports the nanotube growth. For ALD, technicians do this by placing a component or some other substrate material inside a reactor chamber and sequentially pulsing different types of gases to create an ultra-thin film whose layers are literally no thicker than a single atom. Once applied, scientists then are ready to actually grow the carbon nanotubes. They place the component in another oven and heat the part to about 1,832 F (750 C). While it heats, the component is bathed in carbon-containing feedstock gas.

"The samples we've grown to date are flat in shape," Hagopian explained. "But given the complex shapes of some instrument components, we wanted to find a way to grow carbon nanotubes on three-dimensional parts, like tubes and baffles. The tough part is laying down a uniform catalyst layer. That's why we looked to atomic layer deposition instead of other techniques, which only can apply coverage in the same way you would spray something with paint from a fixed angle."

ALD to the Rescue

ALD, first described in the 1980s and later adopted by the semiconductor industry, is one of many techniques for applying thin films. However, ALD offers an advantage over competing techniques. Technicians can accurately control the thickness and composition of the deposited films, even deep inside pores and cavities. This gives ALD the unique ability to coat in and around 3-D objects.

NASA Goddard co-investigator Vivek Dwivedi, through a partnership with the University of Maryland at College Park, is now advancing ALD reactor technology customized for spaceflight applications.

To determine the viability of using ALD to create the catalyst layer, while Dwivedi was building his new ALD reactor, Hagopian engaged through the Science Exchange the services of the Melbourne Centre for Nanofabrication (MCN), Australia's largest nanofabrication research center. The Science Exchange is an online community marketplace where scientific service providers can offer their services. The NASA team delivered a number of components, including an intricately shaped occulter used in a new NASA-developed instrument for observing planets around other stars.

Through this collaboration, the Australian team fine-tuned the recipe for laying down the catalyst layer—in other words, the precise instructions detailing the type of precursor gas, the reactor temperature and pressure needed to deposit a uniform foundation. "The iron films that we deposited initially were not as uniform as other coatings we have worked with, so we needed a methodical development process to achieve the outcomes that NASA needed for the next step," said Lachlan Hyde, MCN's expert in ALD.

The Australian team succeeded, Hagopian said. "We have successfully grown carbon nanotubes on the samples we provided to MCN and they demonstrate properties very similar to those we've grown using other techniques for applying the catalyst layer. This has really opened up the possibilities for us. Our goal of ultimately applying a carbon-nanotube coating to complex instrument parts is nearly realized."

Explore further: Tiny carbon nanotube pores make big impact

Related Stories

Space-age materials, one atomic layer at a time

Aug 17, 2012

Space can be a dangerous place. Micrometeorites, solar particles, and space junk — everything from spent rocket stages to paint fragments — zip past satellites at up to 12.4 miles (20 kilometers) ...

Diamonds, nanotubes find common ground in graphene

May 28, 2013

What may be the ultimate heat sink is only possible because of yet another astounding capability of graphene. The one-atom-thick form of carbon can act as a go-between that allows vertically aligned carbon ...

Recommended for you

Tiny carbon nanotube pores make big impact

Oct 29, 2014

A team led by the Lawrence Livermore scientists has created a new kind of ion channel based on short carbon nanotubes, which can be inserted into synthetic bilayers and live cell membranes to form tiny pores ...

An unlikely use for diamonds

Oct 27, 2014

Tiny diamonds are providing scientists with new possibilities for accurate measurements of processes inside living cells with potential to improve drug delivery and cancer therapeutics.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.