Nanotechnologists find a way of reducing defects in materials

July 4, 2013

Researchers from MESA+, the research institute for nanotechnology at the University of Twente, have developed a method to reduce the number of 'defects' in heterogeneous oxide materials. As a result, the electrical conductivity of these materials can increase substantially; in their experiments, the researchers observed an increase by as much as a factor of 50. The secret lies in an extra layer of copper oxide. The materials are, for example, interesting for fuel cells, sensors and catalysts. The scientific journal Advanced Functional Materials has published the research results.

There is increasing interest in so-called heterogeneous , partly because of their electrical properties. These materials, which consist of several layers and where the atoms have reacted with oxygen, can be used in fuel cells, sensors and catalysts. With these materials it is important that all of the atoms in the crystal lattice have reacted with oxygen, but in practice the materials often contain defects: points on the where there should be an , but where this is not the case.

In collaboration with researchers from the universities of Antwerp and Amsterdam, researchers at the University of Twente have now found a method to greatly reduce the number of defects. By adding an extra layer of to the material it appears that oxygen in the air penetrates the material better, thereby repairing the defects. In their experiments, the researchers observed an increase in the by a factor of 50.

According to Mark Huijben, one of the researchers involved, the research not only produces relevant fundamental scientific knowledge, but society also benefits from the improved control during the production of smart materials. "At the University of Twente we have a lot of knowledge and high-quality facilities in the field of materials research. We are engaged in fundamental research into and development of all kinds of smart materials for numerous applications. For example, we will soon publish another article in Advanced Materials that examines the limits of nanotechnology for a new material that enables you to influence the magnetic properties with an electric field. This material is interesting for applications in the field of data storage, for example."

Explore further: Magnetic spin on non-magnetic materials

More information: The article entitled Defect Engineering in Oxide Heterostructures by Enhanced Oxygen Surface Exchange by M. Huijben, G. Koster, M.K. Kruize, S. Wenderich, J. Verbeeck, S. Bals, E. Slooten, B. Shi, H.J.A. Molegraaf, J.E. Kleibeuker, S. Van Aert, J.B. Goedkoop, A. Brinkman, D.H.A. Blank, M.S. Golden, G. Van Tendeloo, H. Hilgenkamp and G. Rijnders, is published in Advanced Functional Materials DOI: 10.1002/adfm.201203355

Related Stories

Magnetic spin on non-magnetic materials

February 14, 2012

(PhysOrg.com) -- Nanotechnologists from the University of Twente's MESA+ and MIRA research institutes have developed a method for incorporating magnetic elements into non-magnetic materials in a highly controlled way. Using ...

New research uncovers path to defect-free thin films

September 20, 2012

(Phys.org)—A team led by Oak Ridge National Laboratory's Ho Nyung Lee has discovered a strain relaxation phenomenon in cobaltites that has eluded researchers for decades and may lead to advances in fuel cells, magnetic ...

Recommended for you

New nanomaterial maintains conductivity in 3-D

September 4, 2015

An international team of scientists has developed what may be the first one-step process for making seamless carbon-based nanomaterials that possess superior thermal, electrical and mechanical properties in three dimensions.

Graphene made superconductive by doping with lithium atoms

September 2, 2015

(Phys.org)—A team of researchers from Germany and Canada has found a way to make graphene superconductive—by doping it with lithium atoms. In their paper they have uploaded to the preprint server arXiv, the team describes ...

Making nanowires from protein and DNA

September 3, 2015

The ability to custom design biological materials such as protein and DNA opens up technological possibilities that were unimaginable just a few decades ago. For example, synthetic structures made of DNA could one day be ...

For 2-D boron, it's all about that base

September 2, 2015

Rice University scientists have theoretically determined that the properties of atom-thick sheets of boron depend on where those atoms land.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.