Novel nanoparticle delivers powerful RNA interference drugs

July 9, 2013

Silencing genes that have malfunctioned is an important approach for treating diseases such as cancer and heart disease. One effective approach is to deliver drugs made from small molecules of ribonucleic acid, or RNA, which are used to inhibit gene expression. The drugs, in essence, mimic a natural process called RNA interference.

In a new paper appearing today online in the journal, ACS Medicinal Chemistry Letters, researchers at Sanford-Burnham Medical Research Institute have developed that appear to solve a big challenge in delivering the RNA molecules, called small interfering RNA, or siRNA, to the cells where they are needed. By synthesizing a nanoparticle that releases its siRNA cargo only after it enters targeted cells, Dr. Tariq M. Rana and colleagues showed in mice that they could deliver drugs that silenced the genes they wanted.

"Our study describes a strategy to reduce toxic effects of nanoparticles, and deliver a cargo to its target," said Dr. Rana, whose paper, "In Vivo Delivery of RNAi by Reducible Interfering Nanoparticles (iNOPs)," also included contributions from researchers at the University of Massachusetts Medical School and the University of California at San Diego. "We've found a way to release the siRNA compounds, so it can be more effective where it's needed," Dr. Rana said.

In their experiment, the team synthesized what they call interfering nanoparticles, or iNOPs, made from repetitively branched molecules of a small called poly-L-lysine. The iNOPs were specially designed with positively charged residues connected by disulfide bonds and these iNOPS assemble into a complex with negatively charged siRNA molecules. It's the bonds that ensure that the siRNA molecules remain with the nanoparticle, named iNOP-7DS. However, once inside targeted cells, a naturally occurring and abundant antioxidant called glutathione breaks the bond, releasing the siRNA molecules. In their experiment, Dr. Rana and colleagues showed in the lab that iNOP-7DS is reducible – that is, the disulfide bonds holding the siRNA molecules can be broken.

They next showed that iNOP-7DS can be delivered effectively inside cultured murine liver cells, where the siRNA molecules silenced a gene called ApoB. This gene has been notoriously difficult to regulate in liver cells with small molecule drugs; high levels of the protein that ApoB encodes can lead to plaques that cause vascular disease.

Dr. Rana's lab further showed in tests that their nanoparticle remained stable in serum, suggesting that it is not degraded in the bloodstream. Finally, the researchers showed in tests with mice that their nanoparticle iNOP-7DS can be delivered effectively to the liver, spleen, and lung; and it suppressed the level of messenger RNA involved in the expression of the ApoB gene. In their in vivo experiment, they found that extremely small doses of siRNA were effective.

The next step, Dr. Rana said, is to increase the efficacy of iNOP-7DS in other in vivo experiments. "We would like to target not only ApoB, but cancer causing genes as well and in other tissues. That is the next goal." By marshaling the naturally occurring phenomenon of RNA interference, scientists are developing new ways to silence errant involved in illnesses. The nanoparticles developed by Dr. Rana and colleagues offer a potential new strategy for delivering this powerful therapeutic approach.

Explore further: Targeted nanoparticles incorporating siRNA offer promise for cancer treatment

Related Stories

Pack 'Em In -- Gold Nanoparticles Improve Gene Regulation

February 23, 2009

Investigators at Northwestern University have found that packing small interfering RNA (siRNA) molecules onto the surface of a gold nanoparticle can protect siRNAs from degradation and increase their ability to regulate genes ...

Enhancing RNA interference

June 24, 2013

Nanoparticles that deliver short strands of RNA offer a way to treat cancer and other diseases by shutting off malfunctioning genes. Although this approach has shown some promise, scientists are still not sure exactly what ...

Recommended for you

Physicists develop new technique to fathom 'smart' materials

November 26, 2015

Physicists from the FOM Foundation and Leiden University have found a way to better understand the properties of manmade 'smart' materials. Their method reveals how stacked layers in such a material work together to bring ...

Mathematicians identify limits to heat flow at the nanoscale

November 24, 2015

How much heat can two bodies exchange without touching? For over a century, scientists have been able to answer this question for virtually any pair of objects in the macroscopic world, from the rate at which a campfire can ...

New sensor sends electronic signal when estrogen is detected

November 24, 2015

Estrogen is a tiny molecule, but it can have big effects on humans and other animals. Estrogen is one of the main hormones that regulates the female reproductive system - it can be monitored to track human fertility and is ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.