Microgravity memory-test for granular materials suggests landing on asteroids may cause long-distance avalanches

Jul 04, 2013
Stacked photo of the grains in the Asteroid Experiment (AstEx). Credit: (AstEx team)

(Phys.org) —Results from a microgravity experiment suggest that the rubble and dust covering asteroids and comets can feel changes in force-chains between particles over much larger distances than on Earth, making these surfaces less stable than previously imagined. Dr Ben Rozitis of the Open University will present findings from the AstEx parabolic flight experiment at the National Astronomy Meeting in St Andrews on Thursday, 4 July.

"We see examples of force-chains everywhere. When you pick an orange from a pile in a supermarket, some come away easily but others bring the whole lot crashing down. Those weight-bearing oranges are part of a force-chain in the pile," said Dr Naomi Murdoch, a researcher at the Institut Supérieur de l'Aéronautique et de l'Espace in Toulouse. "One important aspect of such chains is that they give a a 'memory' of forces that they have been exposed to. Reversing the direction of a force can effectively break the chain, making the pile less stable."

As a postgraduate students back in 2009, Rozitis and Murdoch took part in the European Space Agency's 'Fly your Thesis' campaign. They conducted experiments inside an Airbus A300, which flew in a series of parabolic that gave the students around 30 minutes of microgravity conditions. The Asteroid Experiment (AstEx) consisted of a cylinder filled with with a rotating drum at the centre. During several free-fall phases of the parabolic flights, AstEx's inner drum was spun for 10s and then the direction of rotation reversed. High-speed cameras imaged the top and bottom layers of beads through glass plates. After the flight, a particle-tracking programme was then applied to the images, and the behaviour of the beads analysed.

Naomi Murdoch and Ben Rozitis in zero gravity alongside the experiment (Credit: A. Le Floc’h, ESA).

The AstEx experiment was designed by Murdoch, Rozitis, and colleagues from The Open University, the Côte d'Azur Observatory and the University of Maryland. AstEx data showed how chains of influence built up between beads when exposed to a force in one direction, and how those chains were disrupted when the force was reversed, both in microgravity and on Earth.

"Many smaller asteroids are thought to be entirely granular in nature – piles of rock and gravel held together by gravity. Understanding the physics of granular materials is important for interpreting spacecraft images of these small bodies, to understand their evolution, and also to help design space missions that will interact with their granular surfaces," said Murdoch. "AstEx allowed us to study the behaviour of grains in conditions that are similar to those encountered on the surfaces of asteroids and comets."

The team found that although particles close to the rotating surface of the drum were affected less in microgravity by the change in direction, those at the edge of the cylinder moved more than in the experiment on Earth. This implies that any changes to force-chains in low-gravity environments could be felt over much larger distances.

Naomi Murdoch and Thomas-Louis de Lophem in zero gravity alongside the experiment (Credit: A. Le Floc’h, ESA).

During their orbits, comets and asteroids may experience forces in a certain direction over long periods, for example during a planetary encounter or due to the rotation of the body. The AstEx findings suggest that an event like a meteorite impact or a spacecraft landing may have long-distance effects on the stability of regolith.

"A lander touching down on the surface on one side of a small, rubble-pile could perhaps cause an avalanche on the other side, by long-range transmission of forces through chains It would, however, depend on the angle and location of the impact, as well as the history of the surface – what kind of memories the regolith holds, " said Murdoch.

Explore further: Research pair offer three possible models of Pluto ahead of New Horizons visit

More information: A paper describing these results was published online on 27 May 2013 in the Monthly Notices of the Royal Astronomical Society: Simulating regoliths in microgravity N. Murdoch, B. Rozitis, S. F. Green, P. Michel, T.-L. de Lophem and W. Losert mnras.oxfordjournals.org/content/early/2013/05/27/mnras.stt742.abstract

Related Stories

Researchers measure Brazil nut effect in reduced gravity

Apr 09, 2013

(Phys.org) —A combined team of researchers from the Technical University of Braunschweig in Germany and Kobe University in Japan has determined that the Brazil nut effect is less pronounced as gravity is ...

Force is the key to granular state-shifting

Feb 15, 2013

Ever wonder why sand can both run through an hourglass like a liquid and be solid enough to support buildings? It's because granular materials – like sand or dirt – can change their behavior, or state. ...

Recommended for you

Vegetables on Mars within ten years?

22 hours ago

The soil on Mars may be suitable for cultivating food crops – this is the prognosis of a study by plant ecologist Wieger Wamelink of Wageningen UR. This would prove highly practical if we ever decide to ...

NASA Cassini images may reveal birth of a Saturn moon

23 hours ago

(Phys.org) —NASA's Cassini spacecraft has documented the formation of a small icy object within the rings of Saturn that may be a new moon, and may also provide clues to the formation of the planet's known ...

Meteorite studies suggest hidden water on Mars

23 hours ago

Geochemical calculations by researchers at Tokyo Institute of Technology to determine how the water content of Mars has changed over the past 4.5 billion years suggest as yet unidentified reservoirs of water ...

User comments : 0

More news stories

ESO image: A study in scarlet

This new image from ESO's La Silla Observatory in Chile reveals a cloud of hydrogen called Gum 41. In the middle of this little-known nebula, brilliant hot young stars are giving off energetic radiation that ...

Astronomers: 'Tilt-a-worlds' could harbor life

A fluctuating tilt in a planet's orbit does not preclude the possibility of life, according to new research by astronomers at the University of Washington, Utah's Weber State University and NASA. In fact, ...

NASA Cassini images may reveal birth of a Saturn moon

(Phys.org) —NASA's Cassini spacecraft has documented the formation of a small icy object within the rings of Saturn that may be a new moon, and may also provide clues to the formation of the planet's known ...

First direct observations of excitons in motion achieved

A quasiparticle called an exciton—responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits—has been understood theoretically for decades. But exciton movement within ...

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Warm US West, cold East: A 4,000-year pattern

Last winter's curvy jet stream pattern brought mild temperatures to western North America and harsh cold to the East. A University of Utah-led study shows that pattern became more pronounced 4,000 years ago, ...

Tech giants look to skies to spread Internet

The shortest path to the Internet for some remote corners of the world may be through the skies. That is the message from US tech giants seeking to spread the online gospel to hard-to-reach regions.