New method for mapping the protein signals between healthy and diseased cells

Jul 02, 2013
Microscope image of human breast cancer cells (red) grown together with mouse fibroblasts (green). This mixed-species culture was used to validate the ability of the CTAP methodology to distinguish proteins from each cell population. Credit: Nicholas Gauthier, Chris Sander, Martin Miller

Researchers at Memorial Sloan-Kettering Cancer Center in New York, working in collaboration with researchers at the Proteome Center Tuebingen (PCT), have developed a new method for identifying the cell of origin of intracellular and secreted proteins within multicellular environments. This technological advancement is particularly exciting because it will provide investigators with a new tool for comprehensive mapping of cell-cell communication, which is especially important in all aspects of cancer development, maintenance, and response to therapy. For example, this method could be used to study cell signaling events between normal and malignant cells in order to better understand the molecular mechanisms by which surrounding normal cells alter tumor growth and response to treatment.

The technique, named cell type specific labeling using amino acid precursors (CTAP), exploits the inability of vertebrate cells to synthesize normally required for growth and homeostasis. A team headed by Dr. Nicholas Gauthier and Dr. Martin Miller at the Memorial Sloan-Kettering Cancer Center engineered cells to express amino acid biosynthesis enzymes, which enabled cells to grow on their own supply of amino acids produced from supplemented precursors.

The team went on to show that supplementing heavy stable isotope-labeled forms of these precursors led to incorporation of heavy amino acids into proteins produced in enzyme expressing cells. Dr. Boumediene Soufi and Dr. Boris Macek from the PCT designed experiments that utilized quantitative to search for proteins that contained these stable isotope labels. In this way, the cell of origin of both intracellular and secreted proteins identified in multicellular culture could be determined. By providing a means to link proteins directly to specific cell types, the authors believe that this new method will be useful in studies of cell-cell communication and biomarker discovery.

Explore further: First detailed microscopy evidence of bacteria at the lower size limit of life

More information: Gauthier, N., Sander, C. and Miller, M. Cell-selective labeling using amino acid precursors for proteomic studies of multicellular environments, Nature Methods 2013.

add to favorites email to friend print save as pdf

Related Stories

New technique for IDing proteins secreted by cells developed

Sep 25, 2012

(Phys.org)—Researchers from North Carolina State University have developed a new technique to identify the proteins secreted by a cell. The new approach should help researchers collect precise data on cell biology, which ...

Chemists develop faster, more efficient protein labeling

Feb 05, 2012

North Carolina State University researchers have created specially engineered mammalian cells to provide a new "chemical handle" which will enable researchers to label proteins of interest more efficiently, without disrupting ...

Recommended for you

Malaria transmission linked to mosquitoes' sexual biology

Feb 26, 2015

Sexual biology may be the key to uncovering why Anopheles mosquitoes are unique in their ability to transmit malaria to humans, according to researchers at Harvard T. H. Chan School of Public Health and University of Per ...

Intermediary neuron acts as synaptic cloaking device

Feb 26, 2015

Neuroscientists believe that the connectome, a map of each and every connection between the millions of neurons in the brain, will provide a blueprint that will allow them to link brain anatomy to brain function. ...

Skeleton of cells controls cell multiplication

Feb 26, 2015

A research team from Instituto Gulbenkian de Ciencia (IGC; Portugal), led by Florence Janody, in collaboration with Nicolas Tapon from London Research Institute (LRI; UK), discovered that the cell's skeleton ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.