Leaf cutter ants inspire powerful new anti-cancer drugs

July 3, 2013

(Phys.org) —Scientists at the University of East Anglia are developing a new class of anti-cancer drugs that are not only powerful but also circumvent a primary cause of resistance to chemotherapy.

Lead researcher Dr Matt Hutchings will talk about his work at the Society for Applied Microbiology Summer Conference in Cardiff today. The work is inspired by nature's fungus farmer, the leaf cutter ant.

Dr Matt Hutchings and his team have been studying a type of antibiotic that is produced by bacteria that live in symbiosis with . They have identified the involved in producing the antibiotic, opening the possibility to use this natural product as the basis for new drugs, including anti-cancer treatments.

The Streptomyces bacteria live on the outer surface of the ants, providing antibiotic protection against disease-causing infection. Among the antibiotics they produce are compounds called antimycins which have powerful activity against drug . Over 40 members of the antimycin family of antibiotics are known but the pathway was only recently identified by the UEA research team.

Dr Hutchings, from UEA's school of Biological Sciences, said: "We're using genetics to understand how the drugs are made in the bacteria so we can tweak the characteristics in favour of anti-cancer action, whilst protecting healthy cells. We want to make Streptomyces into a factory to produce a new type of chemotherapy drug on a large scale.

"What's particularly exciting is that the way the drugs work actually tackles one of the main causes of resistance to chemotherapy. In fact, the harder the cancer cell tries to overcome the chemotherapy, the more effective the drug is!"

Resistance to chemotherapy often arises because produce proteins that prevent apoptosis, or '', that would otherwise be triggered by the treatment. But antimycins actually inhibit the action of these proteins, allowing apoptosis to continue unhindered.

Dr Hutchings said: "Although scientists have known about these antibiotics for more than 60 years, we've only recently identified two genetic pathways that are involved in making these molecules and we're looking for still more."

Work by organic chemists has shown that antimycins can be altered to inhibit their harmful characteristics and promote the useful ones. Specifically, they can be very toxic to all cells because they interfere with fundamental metabolic processes, but it's possible to dramatically reduce this effect by altering their chemistry.

Dr Hutchings' team aim to make these changes through genetics so that the drugs can be made cheaply and on a large scale using bacteria in fermentation tanks.

Explore further: Ants found to use multiple antibiotics as weed killers

Related Stories

Recommended for you

New gene map reveals cancer's Achilles heel

November 25, 2015

Scientists have mapped out the genes that keep our cells alive, creating a long-awaited foothold for understanding how our genome works and which genes are crucial in disease like cancer.

Study suggests fish can experience 'emotional fever'

November 25, 2015

(Phys.org)—A small team of researchers from the U.K. and Spain has found via lab study that at least one type of fish is capable of experiencing 'emotional fever,' which suggests it may qualify as a sentient being. In their ...

How cells in the developing ear 'practice' hearing

November 25, 2015

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular ...

How cells 'climb' to build fruit fly tracheas

November 25, 2015

Fruit fly windpipes are much more like human blood vessels than the entryway to human lungs. To create that intricate network, fly embryonic cells must sprout "fingers" and crawl into place. Now researchers at The Johns Hopkins ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.