Large wave-vector phonon modes in silicon nanomembranes

July 16, 2013
(a) Map of hard X-ray thermal diffuse scattering arising from phonons with wave-vectors across the full Brillouin zone of (b) suspended silicon membrane sheets with nanometer-scale thickness. (c) Scattering results exhibit an excess of intensity at large wave-vectors consistent with an effective softening of the membrane due to new flexural and dilitational phonon modes.

(Phys.org) —Modified large wave-vector phonons in semiconductor membranes via hard X-ray thermal diffuse scattering (TDS) were observed that provide new insight into the fundamental thermal and electronic properties of nanomaterials. The observation of X-ray TDS from suspended silicon membranes with thicknesses below 10 nm vastly expands the range of materials for which these vibrational modes can be studied. Understanding phonon confinement in nanostructures will enable control of thermal, optical, and electrical transport properties.

Using the high brilliance of the Advanced Photon Source at the Center for Nanoscale Materials (CNM) Hard X-Ray Nanoprobe beamline, the team quantitatively analyzed the TDS signal from zone-boundary and provided insight into the lattice dynamics of nanostructures. The team included researchers from CNM's X-Ray Microscopy and Nanofabrication & Devices groups at the Argonne National Laboratory, the University of Wisconsin-Madison, and the European Synchrotron Radiation Facility.

The observation of large wave-vector phonon activity in nanoscale semiconductor membranes through synchrotron X-ray TDS demonstrates the potential for fundamentally new experimental insights into the dynamic behavior of nanoscale solids. Large wave-vector lattice vibrations have relatively smaller wavelength and thus play an increasingly key role in energy transfer and electron mobility at the nanoscale. An important feature of these modes is that they are significantly less sensitive to scattering from interfaces and defects than their small wave-vector counterparts. Study of these vibrations in has been fundamentally limited both by the low wave-vector limit of optical scattering techniques and by the large sample volume requirements of X-ray and neutron inelastic scattering techniques.

Synchrotron X-ray TDS allows the simultaneous collection of vibrational information over a large range of reciprocal space that can be precisely related to the wave-vectors of phonons. The distribution of TDS intensity can be analyzed to determine the phonon dispersion—which is the relationship between the frequency and wave-vector of the vibrations. In this experiment, TDS techniques were adapted for use in nanoscale systems. The analysis of the deviations from bulk TDS intensities observed here at large wave-vectors shows that the dispersion of large-wave-vector phonons in silicon membranes with thicknesses in the tens of nanometers and smaller is strongly influenced by the development of new vibrational modes that arise because the membrane is not mechanically constrained at its surfaces. This approach will allow the experimental study and subsequent engineering of phonons in nanostructures to move beyond approximations that are valid only in the low wave-vector regime. The results contribute to an expanded toolbox for the design of novel thermal and electronic devices.

Explore further: Nanotech: Hot Technology Gets a Cool Down

More information: G. Gopalakrishnan et al., "Thermal Diffuse Scattering as a Probe of Large-Wave-Vector Phonons in Silicon Nanostructures," Phys. Rev. Lett., 10, 205503 (2013).

Related Stories

Nanotech: Hot Technology Gets a Cool Down

June 3, 2008

It’s the hottest technology – featherweight laptops that feature rapid response, crisp graphics and operate complex computer games; slim cell phones with Web-browsing capabilities, store high resolution photos and keep ...

Quantum information motion control is now improved

April 3, 2012

Physicists have recently devised a new method for handling the effect of the interplay between vibrations and electrons on electronic transport. Their paper is about to be published in the European Physical Journal B. This ...

Recommended for you

A new way to make higher quality bilayer graphene

February 8, 2016

(Phys.org)—A team of researchers with members from institutions in the U.S., Korea and China has developed a new way to make bilayer graphene that is higher in quality than that produced through any other known process. ...

Graphene is strong, but is it tough?

February 4, 2016

Graphene, a material consisting of a single layer of carbon atoms, has been touted as the strongest material known to exist, 200 times stronger than steel, lighter than paper, and with extraordinary mechanical and electrical ...

Nanoparticle ink could combat counterfeiting

February 5, 2016

(Phys.org)—Researchers have demonstrated that transparent ink containing gold, silver, and magnetic nanoparticles can be easily screen-printed onto various types of paper, with the nanoparticles being so small that they ...

Tiniest spin devices becoming more stable

February 3, 2016

(Phys.org)—In 2011, the research group of Roland Wiesendanger, Physics Professor at the University of Hamburg in Germany, fabricated a spin-based logic device using the spins of single atoms, a feat that represents the ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Egleton
1 / 5 (1) Jul 16, 2013
I am reminded of Professor Hagelstein's theoretical prediction of collimated x-ray from the surface of the metal mercury due to nuclear and phonon coupling.
Empirical results confirmed his prediction.
Give it time to soak in.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.