Large wave-vector phonon modes in silicon nanomembranes

Jul 16, 2013
(a) Map of hard X-ray thermal diffuse scattering arising from phonons with wave-vectors across the full Brillouin zone of (b) suspended silicon membrane sheets with nanometer-scale thickness. (c) Scattering results exhibit an excess of intensity at large wave-vectors consistent with an effective softening of the membrane due to new flexural and dilitational phonon modes.

(Phys.org) —Modified large wave-vector phonons in semiconductor membranes via hard X-ray thermal diffuse scattering (TDS) were observed that provide new insight into the fundamental thermal and electronic properties of nanomaterials. The observation of X-ray TDS from suspended silicon membranes with thicknesses below 10 nm vastly expands the range of materials for which these vibrational modes can be studied. Understanding phonon confinement in nanostructures will enable control of thermal, optical, and electrical transport properties.

Using the high brilliance of the Advanced Photon Source at the Center for Nanoscale Materials (CNM) Hard X-Ray Nanoprobe beamline, the team quantitatively analyzed the TDS signal from zone-boundary and provided insight into the lattice dynamics of nanostructures. The team included researchers from CNM's X-Ray Microscopy and Nanofabrication & Devices groups at the Argonne National Laboratory, the University of Wisconsin-Madison, and the European Synchrotron Radiation Facility.

The observation of large wave-vector phonon activity in nanoscale semiconductor membranes through synchrotron X-ray TDS demonstrates the potential for fundamentally new experimental insights into the dynamic behavior of nanoscale solids. Large wave-vector lattice vibrations have relatively smaller wavelength and thus play an increasingly key role in energy transfer and electron mobility at the nanoscale. An important feature of these modes is that they are significantly less sensitive to scattering from interfaces and defects than their small wave-vector counterparts. Study of these vibrations in has been fundamentally limited both by the low wave-vector limit of optical scattering techniques and by the large sample volume requirements of X-ray and neutron inelastic scattering techniques.

Synchrotron X-ray TDS allows the simultaneous collection of vibrational information over a large range of reciprocal space that can be precisely related to the wave-vectors of phonons. The distribution of TDS intensity can be analyzed to determine the phonon dispersion—which is the relationship between the frequency and wave-vector of the vibrations. In this experiment, TDS techniques were adapted for use in nanoscale systems. The analysis of the deviations from bulk TDS intensities observed here at large wave-vectors shows that the dispersion of large-wave-vector phonons in silicon membranes with thicknesses in the tens of nanometers and smaller is strongly influenced by the development of new vibrational modes that arise because the membrane is not mechanically constrained at its surfaces. This approach will allow the experimental study and subsequent engineering of phonons in nanostructures to move beyond approximations that are valid only in the low wave-vector regime. The results contribute to an expanded toolbox for the design of novel thermal and electronic devices.

Explore further: Ultrafast remote switching of light emission

More information: G. Gopalakrishnan et al., "Thermal Diffuse Scattering as a Probe of Large-Wave-Vector Phonons in Silicon Nanostructures," Phys. Rev. Lett., 10, 205503 (2013).

Related Stories

Quantum information motion control is now improved

Apr 03, 2012

Physicists have recently devised a new method for handling the effect of the interplay between vibrations and electrons on electronic transport. Their paper is about to be published in the European Physical Journal B. This s ...

Nanotech: Hot Technology Gets a Cool Down

Jun 03, 2008

It’s the hottest technology – featherweight laptops that feature rapid response, crisp graphics and operate complex computer games; slim cell phones with Web-browsing capabilities, store high resolution photos and keep ...

Recommended for you

Ultrafast remote switching of light emission

9 hours ago

Researchers from Eindhoven University of Technology can now for the first time remotely control a miniature light source at timescales of 200 trillionth of a second. They published the results on Sept. 2014 ...

Nanotube cathode beats large, pricey laser

16 hours ago

Scientists are a step closer to building an intense electron beam source without a laser. Using the High-Brightness Electron Source Lab at DOE's Fermi National Accelerator Laboratory, a team led by scientist ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Egleton
1 / 5 (1) Jul 16, 2013
I am reminded of Professor Hagelstein's theoretical prediction of collimated x-ray from the surface of the metal mercury due to nuclear and phonon coupling.
Empirical results confirmed his prediction.
Give it time to soak in.