Researchers image individual atoms in a living catalytic reaction

July 12, 2013

Groundbreaking new electron microscopy technology developed at the York JEOL Nanocentre at the University of York is allowing researchers to observe and analyse single atoms, small clusters and nanoparticles in dynamic in-situ experiments for the first time.

The influential work being carried out at York is opening up striking new opportunities for observing and understanding the role of atoms in reactions in many areas of the physical sciences. It also has important implications for and .

So far, observing reacting atoms has been difficult. When studying the reactions at the catalyst surface, scientists usually have to look into idealised systems under rather than examining the reality of an industrial catalytic process in a gas environment.

However, in a world first, the Directors of the York JEOL Nanocentre, Professor Ed Boyes and Professor Pratibha Gai, have developed in-situ aberration corrected environmental scanning technology (in-situ AC-ESTEM) for catalyst reaction studies in realistic reaction conditions.

With the new technology it is now possible to observe and analyse single atoms, small clusters and in dynamic in-situ experiments with controlled gas reaction environments at initial operating temperatures of up to 500?C under transient reaction conditions.

The seminal research carried out entirely at the York JEOL Nanocentre - a major long-term collaboration between the University's Departments of Chemistry, Physics and Electronics, the European Union, Yorkshire Forward and leading electron optics manufacturer JEOL - is reported in Annalen der Physik (Berlin).

Professor Gai, Co-Director of the York JEOL Nanocentre and Professor of Electron Microscopy with Chairs in York's Departments of Chemistry and Physics, said: "Our research opens up exciting new opportunities for observing and studying reacting atoms, the fundamental basic building blocks of matter, in many reactions and is especially important for the development of new medicines and new energy sources."

The team of York scientists, which includes Michael Ward and Dr Leonardi Lari, has successfully imaged individual platinum atoms on carbon supports in a reacting catalyst under controlled atmosphere and temperature conditions.

Professor Boyes, Co-Director of York JEOL Nanocentre, with Chairs in York's Departments of Physics and Electronics, said: "Platinum on carbon supports is important in many applications in the chemical industry including in energy sources such as fuel cells and is an informative model system more generally."

The work was funded by the Engineering and Physical Sciences Research Council (EPSRC).

Explore further: The World's Smallest Spontaneous Atomic Valentine

More information: The article "ESTEM imaging of single atoms under controlled temperature and gas environment conditions in catalyst reaction studies" appears in the June edition of Annalen der Physik (Berlin) and is featured on the front cover. Ann. Phys. (Berlin) 525(6), 423-429 (2013); DOI: 10.1002/andp.201300068. http://onlinelibrary.wiley.com/doi/10.1002/andp.201300068/abstract

Related Stories

The World's Smallest Spontaneous Atomic Valentine

February 14, 2010

(PhysOrg.com) -- Palladium atoms placed on a carbon base spontaneously formed into an 8 nanometer heart at the University of Birmingham’s Nanoscale Physics Research Laboratory this week. Just in time for Valentine’s ...

Recommended for you

Better together: graphene-nanotube hybrid switches

August 2, 2015

Graphene has been called a wonder material, capable of performing great and unusual material acrobatics. Boron nitride nanotubes are no slackers in the materials realm either, and can be engineered for physical and biological ...

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Meet the high-performance single-molecule diode

July 29, 2015

A team of researchers from Berkeley Lab and Columbia University has passed a major milestone in molecular electronics with the creation of the world's highest-performance single-molecule diode. Working at Berkeley Lab's Molecular ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.