Gold nanoparticles improve photodetector performance

Jul 26, 2013

The mineral molybdenum disulfide (MoS2), which, when solid, behaves in many ways like grease, has semiconducting properties that make it a promising alternative to silicon or graphene in electronic devices. It also strongly absorbs visible light, and so it has been widely employed in light-sensing photodetectors, which are used in a wide range of technologies, such as environmental sensing, process control in factories, and optical communication devices.

Researchers at the National University of Singapore have now found a way to boost the performance of MoS2 photodetectors even further—with nanoparticles of gold. They describe this improvement in the journal Applied Physics Letters, which is produced by AIP Publishing.

Wei Chen, an assistant professor of chemistry and physics, along with graduate student Jia Dan Lin, and their colleagues, applied a single, loosely arranged layer of to the top of a MoS2 photodetector. The gold layer, although less than 15 billionths of a meter thick (representing the diameter of each individual nanoparticle) and made up of fewer than 1000 individual particles, improved the photodetectors' efficiency by a factor of three, according to Chen.

"We anticipate orders of magnitude higher improvement of MoS2's sensitivity using a higher density of coated nanoparticles," Chen said.

Chen suspects that the plasmon oscillations (variations in the electron density) of individual nanoparticles—which enhance the local optical field—may be one reason for the improved performance of the photodetectors.

"The next step will focus on varying the materials used to make the nanoparticles, as well as their size, shape, and arrangement," Chen noted—adjustments that will "tune" the plasmon resonance wavelength of the metal nanostructure arrays, making it possible for MoS2 todetect multiple colors for the first time.

Explore further: New technique may open up an era of atomic-scale semiconductor devices

More information: Applied Physics Letters. DOI: 10.1063/1.4807658

Related Stories

Fantastic flash memory combines graphene and molybdenite

Mar 19, 2013

Swiss scientists have combined two materials with advantageous electronic properties—graphene and molybdenite—into a flash memory prototype that is very promising in terms of performance, size, flexibility ...

Recommended for you

First direct observations of excitons in motion achieved

Apr 16, 2014

A quasiparticle called an exciton—responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits—has been understood theoretically for decades. But exciton ...

User comments : 0

More news stories

Thinnest feasible nano-membrane produced

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...