Playing with glass safely—and making it stronger

July 18, 2013 by Bill Hathaway
Playing with glass safely — and making it stronger

(Phys.org) —Researchers at Yale have developed a way to alter the microanatomy of glass and measure how the changes affect the material's overall character—offering new possibilities for tailoring glass with unusual strength and flexibility.

The method also applies to a wide variety of materials other than glass, including like steels, , natural materials, and composites.

"Correlating structure with property is the holy grail of materials science, and has been very difficult to study, particularly for technologically interesting materials," said Jan Schroers, professor of mechanical engineering and materials science at Yale. "We can now develop composites that are optimized for tensile ductility, perhaps the most important material property for structural applications."

Ductility refers to a material's plasticity, or its ability to change shape without breaking. Metallic glasses are , or blends, that can be extremely strong. A challenge for has been finding a way to design metallic glasses with greater ability to withstand immediate fracture upon deformation.

Schroers is the principal investigator of the research, which was published July 17 in the journal Nature Communications.

The new method, which the researchers call "artificial microstructures," allows them to vary one aspect of a material's microstructure—spacing, volume fraction, or shape, for example—while holding all other features constant. The method also allows them to measure the changes' effects on the material's general properties, such as strength and flexibility.

"Our method allows us to 'decode' microstructures and establish -property relationships," Schroers said. "In the past this could only be done, with some exceptions, through computer modeling." But computer modeling has rarely been able to predict the properties accurately.

Now researchers can design actual new microstructures and make scores of them in a matter of weeks.

Schroers, an expert in metallic glasses, is already using the new method to examine flaw tolerance and to understand nature's own design optimization processes.

"We can readily and highly quantitatively do this now," he said.

The paper is titled "Designing tensile ductility in metallic glasses."

Explore further: Discovery of anomalous softening phenomenon and shear bands suppression effect in metallic glass

Related Stories

Metallic glass: How nanoscale islands react under strain

May 8, 2013

Quick-cooling molten atoms give metal alloys a glassy, or random, atomic structure that generates higher elasticity and better wear- and corrosion-resistance than their crystalline alloy counterparts. However, these 'metallic ...

Local icosahedral order in metallic glasses

July 15, 2013

(Phys.org) —Metallic glasses are essentially a frozen, supercooled liquid. They are amorphous metals, often alloys, which are non-crystalline and therefore have a highly disordered atomic arrangement. They are true glasses ...

Recommended for you

Understanding nature's patterns with plasmas

August 23, 2016

Patterns abound in nature, from zebra stripes and leopard spots to honeycombs and bands of clouds. Somehow, these patterns form and organize all by themselves. To better understand how, researchers have now created a new ...

NIST's compact gyroscope may turn heads

August 23, 2016

Shrink rays may exist only in science fiction, but similar effects are at work in the real world at the National Institute of Standards and Technology (NIST).

Stretchy supercapacitors power wearable electronics

August 23, 2016

A future of soft robots that wash your dishes or smart T-shirts that power your cell phone may depend on the development of stretchy power sources. But traditional batteries are thick and rigid—not ideal properties for ...

Study reveals new physics of how fluids flow in porous media

August 23, 2016

One of the most promising approaches to curbing the flow of human-made greenhouse gases into the atmosphere is to capture these gases at major sources, such as fossil-fuel-burning power plants, and then inject them into deep, ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

hemitite
not rated yet Jul 18, 2013
How does one vary the STRUCTURE of an amorphous material such as glass?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.