Playing with glass safely—and making it stronger

July 18, 2013 by Bill Hathaway
Playing with glass safely — and making it stronger

( —Researchers at Yale have developed a way to alter the microanatomy of glass and measure how the changes affect the material's overall character—offering new possibilities for tailoring glass with unusual strength and flexibility.

The method also applies to a wide variety of materials other than glass, including like steels, , natural materials, and composites.

"Correlating structure with property is the holy grail of materials science, and has been very difficult to study, particularly for technologically interesting materials," said Jan Schroers, professor of mechanical engineering and materials science at Yale. "We can now develop composites that are optimized for tensile ductility, perhaps the most important material property for structural applications."

Ductility refers to a material's plasticity, or its ability to change shape without breaking. Metallic glasses are , or blends, that can be extremely strong. A challenge for has been finding a way to design metallic glasses with greater ability to withstand immediate fracture upon deformation.

Schroers is the principal investigator of the research, which was published July 17 in the journal Nature Communications.

The new method, which the researchers call "artificial microstructures," allows them to vary one aspect of a material's microstructure—spacing, volume fraction, or shape, for example—while holding all other features constant. The method also allows them to measure the changes' effects on the material's general properties, such as strength and flexibility.

"Our method allows us to 'decode' microstructures and establish -property relationships," Schroers said. "In the past this could only be done, with some exceptions, through computer modeling." But computer modeling has rarely been able to predict the properties accurately.

Now researchers can design actual new microstructures and make scores of them in a matter of weeks.

Schroers, an expert in metallic glasses, is already using the new method to examine flaw tolerance and to understand nature's own design optimization processes.

"We can readily and highly quantitatively do this now," he said.

The paper is titled "Designing tensile ductility in metallic glasses."

Explore further: Discovery of anomalous softening phenomenon and shear bands suppression effect in metallic glass

Related Stories

Metallic glass: How nanoscale islands react under strain

May 8, 2013

Quick-cooling molten atoms give metal alloys a glassy, or random, atomic structure that generates higher elasticity and better wear- and corrosion-resistance than their crystalline alloy counterparts. However, these 'metallic ...

Local icosahedral order in metallic glasses

July 15, 2013

( —Metallic glasses are essentially a frozen, supercooled liquid. They are amorphous metals, often alloys, which are non-crystalline and therefore have a highly disordered atomic arrangement. They are true glasses ...

Recommended for you

A quantum of light for materials science

December 1, 2015

Computer simulations that predict the light-induced change in the physical and chemical properties of complex systems, molecules, nanostructures and solids usually ignore the quantum nature of light. Scientists of the Max-Planck ...

Quantum dots used to convert infrared light to visible light

December 1, 2015

(—A team of researchers at MIT has succeeded in creating a double film coating that is able to convert infrared light at modest intensities into visible light. In their paper published in the journal Nature Photonics, ...

Test racetrack dipole magnet produces record 16 tesla field

November 30, 2015

A new world record has been broken by the CERN magnet group when their racetrack test magnet produced a 16.2 tesla (16.2T) peak field – nearly twice that produced by the current LHC dipoles and the highest ever for a dipole ...

Turbulence in bacterial cultures

November 30, 2015

Turbulent flows surround us, from complex cloud formations to rapidly flowing rivers. Populations of motile bacteria in liquid media can also exhibit patterns of collective motion that resemble turbulent flows, provided the ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Jul 18, 2013
How does one vary the STRUCTURE of an amorphous material such as glass?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.