Fruit fly midguts provide human abdomen acumen

Jul 04, 2013 by Byamanda Garris
Fruit fly midguts provide human abdomen acumen
Buchon found that many genes were expressed only in specific regions of the midgut. Here, the green fluorescent protein was used to reveal the precise locations where eight different genes were switched on along the gut.

(Phys.org) —Nicolas Buchon, associate professor of entomology, is giving the fruit fly research community a lot to digest: a detailed molecular and anatomical atlas of the fruit fly digestive tract. The results, published in the May 30 issue of Cell Reports, are accompanied by a new website to help researchers explore health and disease in this complex organ.

His work could allow scientists to better explore how infection and the resulting inflammation trigger stem . It could also help them understand how the health of the is maintained and perhaps identify the origins of such disorders as Crohn's disease and .

"The insect gut is a common target for pest control measures and a temporary home for many insect-borne human diseases," said Buchon. "Understanding its processes and complexity has very applied as well as basic significance."

One of Buchon's basic research questions is how respond to infection.

"The gut is a good place to study this, since it is a hotspot for infection, , inflammation and stem cell proliferation," he said. "However, for a small organ – 5 millimeters in an adult fruit fly – its organization has incredible complexity, and for researchers to interpret what we see, we need to know exactly where we are."

This motivated Buchon and his group to develop a comprehensive map of a fruit fly's midgut, which follows a similar blueprint to our own stomach, and .

Fruit fly midguts provide human abdomen acumen
3-D models like the one above integrate both the location of gene expression (indicated in green) and the gut morphology.

After mapping the physical topography – constrictions, flats, folds and protrusions – the researchers tracked precisely where hundreds of individual genes were turned on and off and their level of activity. Taken together, the data allowed them to identify six major regions and the master that control them.

"Many genes were expressed in a single region in a gradient pattern that switched off at the borders of the anatomical regions; [that] gave us a clue that something might be diffusing out from the borders to cause the gradient," said Buchon. "We were able to pinpoint some of the partners –  transcription factors and morphogens – that control this.

"In fact, by altering the expression of a single transcription factor, we were able to change the identity of a region," he added.

With the anatomical structure in hand and an understanding of genetic fingerprints of steady-state normalcy, or homeostasis, the researchers then probed for changes in response to challenges from disease and natural aging. Like humans, the fruit fly gut contains absorptive cells to enhance nutrient uptake as well as stem cells that regenerate tissue after disruption from disease or injury.

"It was strange and fascinating to observe how stable those regions are," said Buchon. "Although infection can completely change the patterns of gene expression and even section identity, through stem cell regeneration, the gut had precisely reset itself four days after infection had passed."

Old age – which begins at around 40 days in – revealed the limits of resilience in the system.

"In older flies, the system starts to fall apart, which was interesting but disturbing," said Buchon. "The regional organization breaks down, equilibrium disappears and stem cells overproliferate. It has parallels to the earliest stages in cancer in humans."

Researchers around the world are already using the atlas, which Buchon made available on the new flygut website, an interactive database that includes 3-D models, videos of midgut anatomy and all of the gene expression data from his study.

Explore further: How plant cell compartments change with cell growth

More information: Flygut: An atlas of the Drosophila adult midgut - flygut.epfl.ch/

Related Stories

Study clarifies role of bacteria in pandemic diseases

Jul 04, 2013

(Phys.org) —Wolbachia are intracellular bacteria that infect invertebrates at pandemic levels, including insects that cause such devastating diseases as Dengue fever, West Nile virus, and malaria. While Wolbachia-based ...

The TALE of new tools to study gene regulation

Jul 01, 2013

In nearly every organism's genome, scattered between genes that encode proteins, long regulatory regions stretch across expanses of DNA. Understanding what role these so-called enhancer regions play in controlling the activation ...

Recommended for you

How plant cell compartments change with cell growth

18 hours ago

A research team led by Kiminori Toyooka from the RIKEN Center for Sustainable Resource Science has developed a sophisticated microscopy technique that for the first time captures the detailed movement of ...

Plants can 'switch off' virus DNA

18 hours ago

A team of virologists and plant geneticists at Wageningen UR has demonstrated that when tomato plants contain Ty-1 resistance to the important Tomato yellow leaf curl virus (TYLCV), parts of the virus DNA ...

A better understanding of cell to cell communication

19 hours ago

Researchers of the ISREC Institute at the School of Life Sciences, EPFL, have deciphered the mechanism whereby some microRNAs are retained in the cell while others are secreted and delivered to neighboring ...

A glimpse at the rings that make cell division possible

20 hours ago

Forming like a blown smoke ring does, a "contractile ring" similar to a tiny muscle pinches yeast cells in two. The division of cells makes life possible, but the actual mechanics of this fundamental process ...

User comments : 0