Controlling friction by tuning van der Waals forces

Jul 19, 2013

For a car to accelerate there has to be friction between the tire and the surface of the road. The amount of friction generated depends on numerous factors, including the minute intermolecular forces acting between the two surfaces in contact – so-called van der Waals forces. The importance of these intermolecular interactions in generating friction has long been known, but has now been demonstrated experimentally for the first time by a research team led by Physics Professor Karin Jacobs from Saarland University and Professor Roland Bennewitz from the Leibniz Institute for New Materials (INM). Interestingly, the research team has shown that the friction acting at a material surface is influenced by the structure of the sub-surface layers.

Friction is an everyday phenomenon that is sometimes desirable (enabling cars to accelerate) and sometimes not (friction in the form of vehicle drag and friction in the engine and transmission system increase the car's ). For many scientists and engineers, the ability to control friction is therefore right at the top of their wish list. A possible approach to controlling friction has just been published by researchers at Saarland University and INM. They have discovered that frictional force is affected by the composition of the materials beneath the surface.

The work carried out by the Saarbrücken scientists involved taking a closer look at the acting between two materials. In order to be able to vary these forces, the researchers worked with polished, single-crystal . 'The wafers are covered with silicon dioxide layers of different thicknesses and are similar to those used in the ,' explained Karin Jacobs, Professor of Experimental Physics at Saarland University.

Jacobs' team precisely measured the friction between silicon dioxide (SiO2) layers of different thicknesses and the 200-nm tip of an probe by carefully scanning the tip across the wafer surface. What the physicists discovered was surprising: although the uppermost layer of the surface always consisted purely of SiO2, the tip of the atomic force microscope experienced different frictional forces depending on the thickness of the layer. 'The thinner the oxide layer, the greater the friction,' said Jacobs. The study found that the frictional forces associated with the wafers differed by as much as 30 per cent depending on the thickness of the SiO2 layer. The effect was also observed when the silicon wafers were covered with a water-repellent monolayer of silane molecules (long-chain hydrocarbons).

'The results of our study have significant implications for many practical applications,' said Professor Jacobs. 'As the strength of the van der Waals forces depends on the composition of a material to depths of up to 100 nanometres, carefully designing the layer structure at the surface of a material can reduce friction. This gives us another approach to controlling friction in addition to the established use of lubricants.'

Explore further: Physicists discover a new kind of friction in the nanoworld

More information: DOI: 10.1103/PhysRevLett.111.035502

add to favorites email to friend print save as pdf

Related Stories

Finnish researchers find explanation for sliding friction

May 29, 2012

Friction is a key phenomenon in applied physics, whose origin has been studied for centuries. Until now, it has been understood that mechanical wear-resistance and fluid lubrication affect friction, but the fundamental origin ...

At the nanoscale, graphite can turn friction upside down

Oct 17, 2012

(Phys.org)—If you ease up on a pencil, does it slide more easily? Sure. But maybe not if the tip is sharpened down to nanoscale dimensions. A team of researchers at the National Institute of Standards and Technology (NIST) ...

Less friction loss in combustion engines

Jun 05, 2013

Researchers have developed a method that can reduce engine friction and wear even during production of engine components. Special coatings can help to reduce fuel consumption and CO2 emissions.

Recommended for you

'Exotic' material is like a switch when super thin

Apr 18, 2014

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

User comments : 0

More news stories

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.

Finnish inventor rethinks design of the axe

(Phys.org) —Finnish inventor Heikki Kärnä is the man behind the Vipukirves Leveraxe, which is a precision tool for splitting firewood. He designed the tool to make the job easier and more efficient, with ...