Fragments falling onto the Sun

July 1, 2013
An image of a portion of the Sun's active corona as seen in the ultraviolet with the Solar Dynamics Observatory. A giant flare is present, with the Earth shown to size in the inset.

( —Stars form as gravity coalesces the gas and dust in an interstellar cloud until the material develops clumps dense enough to become stars. Even after a star begins to burn its nuclear fuel it continues to grow in mass as it accumulates matter from its natal cloud - and also from a surrounding ring of circumstellar material that develops. (This disk can subsequently produce planets.) Mass accretion from the circumstellar disk onto the stellar surface is expected to play an important role in star formation, especially in its later stages, but the process is very difficult to measure on other stars, leaving scientists uncertain about the many details.

Young low-mass stars are thought to interact with their circumstellar disks via magnetic funnels. Hot gas plasma accretes along these funnels, falling onto the stellar surface at velocities of hundreds of kilometers per second . Most of the evidence for this comes from excess emission seen at infrared, optical, ultraviolet, and even X-ray wavelengths. Current models suggest that an impact region is rather complex because of the interplay between the radiation and the hot gas. According to models, the infalling material, after colliding back onto the surface, is heated to millions of degrees and partially sinks into the star's chromosphere. The impact can also drive strong motions and feed material back into surrounding coronal structures. The streams could be highly structured in both density and velocity, and result in inhomogeneous impact spots.

All these ideas are now being tested, thanks in part to the remarkable Solar Dynamics Observatory satellite that was launched in 2010 with an instrument team that included SAO scientists. In the latest issue of Science Express, SAO astronomer Paola Testa and five colleagues report discovering that fragments of ejected material from a fell back onto the Sun's surface and produced intense bursts of emission resembling those thought to occur in young stars. The scientists simulated the infall, and found good agreement between the models and observations. It seems likely that studies of our own mature Sun will help unravel a mystery about how young stars develop.

Explore further: The anatomy of a stellar outflow

Related Stories

The anatomy of a stellar outflow

May 28, 2012

( -- Astronomers used to think that star formation simply involved the gradual coalescence of material under the influence of gravity. No longer. Making a new star is a complex process, among other things assembling ...

The spectral energy distribution of protostars

August 6, 2012

( -- Stars form when gravitational forces coalesce the gas and dust in interstellar clouds until the material forms clumps dense enough to become stars. Precisely how this happens, however, is still very uncertain. ...

Modeling Jupiter and Saturn's possible origins

March 5, 2013

New theoretical modeling by Carnegie's Alan Boss provides clues to how the gas giant planets in our solar system—Jupiter and Saturn—might have formed and evolved. His work was published recently by the Astrophysical Journal.

Hunting high-mass stars with Herschel

March 27, 2013

( —In this new view of a vast star-forming cloud called W3, ESA's Herschel space observatory tells the story of how massive stars are born.

Young star suggests our sun was a feisty toddler

June 5, 2013

If you had a time machine that could take you anywhere in the past, what time would you choose? Most people would probably pick the era of the dinosaurs in hopes of spotting a T. rex. But many astronomers would choose the ...

Solar splashdown

June 20, 2013

( —On June 7, 2011, our Sun erupted, blasting tons of hot plasma into space. Some of that plasma splashed back down onto the Sun's surface, sparking bright flashes of ultraviolet light. This dramatic event may ...

Recommended for you

Researchers find a new way to weigh a star

October 5, 2015

Researchers from the University of Southampton have developed a new method for measuring the mass of pulsars – highly magnetised rotating neutron stars formed from the remains of massive stars after they explode into supernovae.

How to prepare for Mars? NASA consults Navy sub force

October 5, 2015

As NASA contemplates a manned voyage to Mars and the effects missions deeper into space could have on astronauts, it's tapping research from another outfit with experience sending people to the deep: the U.S. Navy submarine ...

NASA selects investigations for future key planetary mission

October 1, 2015

NASA has selected five science investigations for refinement during the next year as a first step in choosing one or two missions for flight opportunities as early as 2020. Three of those chosen have ties to NASA's Jet Propulsion ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.