Fragments falling onto the Sun

July 1, 2013
An image of a portion of the Sun's active corona as seen in the ultraviolet with the Solar Dynamics Observatory. A giant flare is present, with the Earth shown to size in the inset.

(Phys.org) —Stars form as gravity coalesces the gas and dust in an interstellar cloud until the material develops clumps dense enough to become stars. Even after a star begins to burn its nuclear fuel it continues to grow in mass as it accumulates matter from its natal cloud - and also from a surrounding ring of circumstellar material that develops. (This disk can subsequently produce planets.) Mass accretion from the circumstellar disk onto the stellar surface is expected to play an important role in star formation, especially in its later stages, but the process is very difficult to measure on other stars, leaving scientists uncertain about the many details.

Young low-mass stars are thought to interact with their circumstellar disks via magnetic funnels. Hot gas plasma accretes along these funnels, falling onto the stellar surface at velocities of hundreds of kilometers per second . Most of the evidence for this comes from excess emission seen at infrared, optical, ultraviolet, and even X-ray wavelengths. Current models suggest that an impact region is rather complex because of the interplay between the radiation and the hot gas. According to models, the infalling material, after colliding back onto the surface, is heated to millions of degrees and partially sinks into the star's chromosphere. The impact can also drive strong motions and feed material back into surrounding coronal structures. The streams could be highly structured in both density and velocity, and result in inhomogeneous impact spots.

All these ideas are now being tested, thanks in part to the remarkable Solar Dynamics Observatory satellite that was launched in 2010 with an instrument team that included SAO scientists. In the latest issue of Science Express, SAO astronomer Paola Testa and five colleagues report discovering that fragments of ejected material from a fell back onto the Sun's surface and produced intense bursts of emission resembling those thought to occur in young stars. The scientists simulated the infall, and found good agreement between the models and observations. It seems likely that studies of our own mature Sun will help unravel a mystery about how young stars develop.

Explore further: Solar splashdown

Related Stories

Solar splashdown

June 20, 2013

(Phys.org) —On June 7, 2011, our Sun erupted, blasting tons of hot plasma into space. Some of that plasma splashed back down onto the Sun's surface, sparking bright flashes of ultraviolet light. This dramatic event may ...

Young star suggests our sun was a feisty toddler

June 5, 2013

If you had a time machine that could take you anywhere in the past, what time would you choose? Most people would probably pick the era of the dinosaurs in hopes of spotting a T. rex. But many astronomers would choose the ...

The spectral energy distribution of protostars

August 6, 2012

(Phys.org) -- Stars form when gravitational forces coalesce the gas and dust in interstellar clouds until the material forms clumps dense enough to become stars. Precisely how this happens, however, is still very uncertain. ...

Modeling Jupiter and Saturn's possible origins

March 5, 2013

New theoretical modeling by Carnegie's Alan Boss provides clues to how the gas giant planets in our solar system—Jupiter and Saturn—might have formed and evolved. His work was published recently by the Astrophysical Journal.

Hunting high-mass stars with Herschel

March 27, 2013

(Phys.org) —In this new view of a vast star-forming cloud called W3, ESA's Herschel space observatory tells the story of how massive stars are born.

The anatomy of a stellar outflow

May 28, 2012

(Phys.org) -- Astronomers used to think that star formation simply involved the gradual coalescence of material under the influence of gravity. No longer. Making a new star is a complex process, among other things assembling ...

Recommended for you

Hubble catches a transformation in the Virgo constellation

December 9, 2016

The constellation of Virgo (The Virgin) is especially rich in galaxies, due in part to the presence of a massive and gravitationally-bound collection of over 1300 galaxies called the Virgo Cluster. One particular member of ...

Khatyrka meteorite found to have third quasicrystal

December 9, 2016

(Phys.org)—A small team of researchers from the U.S. and Italy has found evidence of a naturally formed quasicrystal in a sample obtained from the Khatyrka meteorite. In their paper published in the journal Scientific Reports, ...

Scientists sweep stodgy stature from Saturn's C ring

December 9, 2016

As a cosmic dust magnet, Saturn's C ring gives away its youth. Once thought formed in an older, primordial era, the ring may be but a mere babe – less than 100 million years old, according to Cornell-led astronomers in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.