Solving electron transfer

Jul 02, 2013

EPFL scientists have shown how a solvent can interfere with electron transfer by using unprecedented time resolution in ultrafast fluorescence spectroscopy.

Electron transfer is a process by which an atom donates an electron to another atom. It is the foundation of all , and is of intense research because of the implications it has for . When two molecules interact, electron transfer takes place in a few quadrillionths (10-15¬) of a second, or femtoseconds (fsec), meaning that studying this event requires very time-sensitive techniques like ultrafast spectroscopy. However, the transfer itself is often influenced by the solution in which the molecules are studied (e.g. water), and this must be taken into account when such experiments are designed. In a recent Nature Communications paper, EPFL scientists have visualized for the first time how electron transfer takes place in one of the most common solvents, water.

For over twenty years, scientists have been trying to understand how an electron departs from an atom or molecule, travels through space in a solvent, and finally connects to an acceptor atom or molecule. Until now, experimental efforts have not borne much fruit, mostly because of the extremely short time periods involved in electron transfer. The problem is further complicated when we consider that the molecules of the commonest reaction solvent, water, are polar, which means that they respond to electron movement by influencing it. Understanding the real-time impact of the solvent is crucial, because it directly affects the outcome and efficiency of electron-transfer chemical reactions.

Majed Chergui's group at EPFL's Laboratory of Ultrafast Spectroscopy (LSU) employed a world-unique setup in their lab to observe the evolution of electron movement with unprecedented . The scientists excited iodide in water with , causing the ejection of an electron from the iodine atom. Using a technique called ultrafast they observed the departure of the electron over different times between 60 fsec and 450 fsec. Previous research has always been limited between 200 fsec – 300 fsec because once the electron exits, other processes take place that shade the longer periods of time – and shorter timepoints have been inaccessible.

The experiment showed that the departure of the electron depends very much on the configuration of the solvent cage around the . In chemistry, a 'solvent cage' refers to the way a solvent's molecules configure around an atom or molecule and 'try to hold it in place'. What the EPFL researchers found was that the polarized water molecules held the excited electron in place for a time, causing some structural re-arrangement of the solvent (water) in the process, while the driving force for electron ejection into the solvent is being reduced. Ultimately, the solvent cage does not prevent electrons from departing, but it slows down their departure stretching their residence time around iodine up to 450 fsec.

The breakthrough study shows how strongly the configuration and re-arrangement of the solvent affects electron departure. "It's not enough to consider only the donor and acceptor of the electron – now you have to consider the solvent in between", says Majed Chergui. "If you are thinking about driving by light into processes, this is in a way telling the community 'watch out, don't neglect the solvent – it is a key partner in the game, and the re-arrangement of the is going to determine how efficient your reaction will be.'"

Explore further: The electric slide dance of DNA knots

Related Stories

Novel DNA architecture for nanotechnology

Oct 04, 2012

The DNA structure as revealed by Watson and Crick is pivotal to the stability and replication of the DNA double helix. Replacement of the DNA base-pairs with other molecular entities is providing new functions ...

Recommended for you

Chemist develops X-ray vision for quality assurance

7 minutes ago

It is seldom sufficient to read the declaration of contents if you need to know precisely what substances a product contains. In fact, to do this you need to be a highly skilled chemist or to have genuine ...

The future of ultrashort laser pulses

16 minutes ago

Rapid advances in techniques for the creation of ultra-short laser pulses promise to boost our knowledge of electron motions to an unprecedented level.

IHEP in China has ambitions for Higgs factory

17 hours ago

Who will lay claim to having the world's largest particle smasher?. Could China become the collider capital of the world? Questions tease answers, following a news story in Nature on Tuesday. Proposals for ...

The physics of lead guitar playing

19 hours ago

String bends, tapping, vibrato and whammy bars are all techniques that add to the distinctiveness of a lead guitarist's sound, whether it's Clapton, Hendrix, or BB King.

The birth of topological spintronics

20 hours ago

The discovery of a new material combination that could lead to a more efficient approach to computer memory and logic will be described in the journal Nature on July 24, 2014. The research, led by Penn S ...

User comments : 0