When diffusion depends on chronology

Jul 15, 2013
When diffusion depends on chronology

The Internet, motorways and other transport systems, and many social and biological systems are composed of nodes connected by edges. They can therefore be represented as networks. Scientists studying diffusion over such networks over time have now identified the temporal characteristics that affect their diffusion pathways. In a paper about to be published in European Physical Journal B, Renaud Lambiotte and Lionel Tabourier from the University of Namur, Belgium, together with Jean-Charles Delvenne from the Catholic University of Louvain, Belgium, show that one key factor that can dramatically change a diffusion process is the order in which events take place in complex networks.

Since it is now possible to gather data on the timings at which edges of a are activated or not, network dynamics can now be studied more precisely. Empirical evidence in a variety of social and biological systems has shown that the time intervals between the activation of edges are such that it occurs in bursts. As a result, there are broad distributions for the times between these activation events.

So far, a majority of works have relied on . However, a purely is unable to provide a general picture of the problem and to identify important structural and temporal properties. Instead, the authors developed an analytical model to better understand the properties of time-dependent networks that either accelerate or slow down diffusion.

Their analytical study focused on different classes of popular models for diffusion, namely random walks—which is a of a path that consists of a succession of random steps— and epidemic spread models, and found the way in which the temporal ordering of events matters. They expect these results to help in building more appropriate metrics to understand real-world complex network data.

Explore further: Serial time-encoded amplified microscopy for ultrafast imaging based on multi-wavelength laser

More information: R. Lambiotte, and L. Tabourier and J.C. Delvenne (2013), Burstiness and spreading on temporal networks. European Physical Journal B, DOI 10.1140/epjb/e2013-40456-9

add to favorites email to friend print save as pdf

Related Stories

Study finds human communication is 'bursty'

Sep 14, 2011

Researchers in Spain have investigated the temporal patterns of human communication and how the latter impacts the spread of information in social networks. The results, published in the journal Physical Re ...

Unraveling biological networks

Mar 05, 2012

A new approach to disentangling the complexities of biological networks, such as the way in which proteins interact in our body's cells has been developed by researchers in China. The team's algorithm could allow biologists ...

Recommended for you

Timely arrival of Pharao space clock

20 hours ago

ESA has welcomed the arrival of Pharao, an important part of ESA's atomic clock experiment that will be attached to the International Space Station in 2016.

First in-situ images of void collapse in explosives

Jul 25, 2014

While creating the first-ever images of explosives using an x-ray free electron laser in California, Los Alamos researchers and collaborators demonstrated a crucial diagnostic for studying how voids affect ...

User comments : 0