Researchers develop 3-D display with no ghosting for viewers without glasses

Jul 12, 2013 by Tim Stephens
Researchers develop 3-D display with no ghosting for viewers without glasses
Ghosting makes a 3D TV image (above) blurry for viewers without stereo glasses, but with 3D+2D TV (below) the image is sharp for viewers with and without glasses. Credit: J. Davis

(Phys.org) —Researchers at the University of California, Santa Cruz, have developed a prototype for 3D+2D television that allows viewers with stereo glasses to see three-dimensional images, while viewers without the glasses see a normal two-dimensional image.

With existing 3D television displays, viewers must wear stereo glasses to get the effect of seeing images on the screen in , while viewers without the glasses see a blurry image. That's because the 3D TV shows a different image to each eye through the stereo glasses, and a viewer without the glasses sees both images superimposed, resulting in "ghosting."

"There are a lot of reasons why it would be desirable to not need the glasses," said James Davis, associate professor of computer science in the Baskin School of Engineering at UC Santa Cruz, who led the project. "They can be expensive, so you wouldn't want to buy extra pairs, and they can interfere with other activities."

Davis developed the new technique with UCSC graduate students Steven Scher, Jing Liu, Rajan Vaish, and Prabath Gunawardane. His team will present their 3D+2D TV technology at SIGGRAPH 2013, the 40th International Conference and Exhibition on Computer Graphics and Interactive Techniques, on Thursday, July 25, in Anaheim. They have also described it in a paper in the June issue of ACM Transactions on Graphics.

Researchers develop 3-D display with no ghosting for viewers without glasses

Davis's 3D+2D TV shows separate left and right images when viewed through glasses, but those without glasses see only the left image. The system also displays a third image, which is not seen through either lens of the glasses. The third image is the negative of the right image—bright where the right is dark, and dark where the right image is bright—canceling out the right image so those without glasses see only the left image.

With this simple version of the system, 2D viewers see a low-contrast image, because the darkest pixel is relatively bright. To restore acceptable contrast to 2D viewers, the researchers allowed the images seen by the left and right eyes of 3D viewers to have unequal brightness, where the left becomes brighter and the right dimmer. Then they conducted several experiments to determine the optimal brightness ratio between right and left images. They found that brightness ratios in the range between 20 percent and 60 percent were acceptable for viewers both with and without glasses.

The researchers also conducted experiments to quantify the "Pulfrich effect," which slightly distorts depth perception of moving objects when one eye sees a darker image than the other, as if the darker image had been delayed a few milliseconds. They found that this "virtual time delay" is similar in magnitude to the actual time delay experienced with sequential-frame 3D displays, which show left-right image pairs with an 8 millisecond delay between left and right images on a 120-Hz display.

Their findings indicate that the Pulfrich effect is not an obstacle to using unequal brightness for right and left eyes in a 3D+2D TV. In fact, they found that the virtual time delay of the Pulfrich effect can be used to cancel the effect of the actual in a sequential-frame stereo display.

The researchers built a prototype of their 3D+2D TV by aligning a 3D projector with a second, polarized projector used to project the negative of the right image. The image from the polarized projector is not visible through the LCD active shutter glasses synchronized to the 3D projector.

The researchers have filed a patent application, and one of Davis's students, Jing Liu, has been working with students at Stanford University's Graduate School of Business to look into starting a company based on this technology. They are off to a promising start, garnering positive feedback at Stanford's "Startup Weekend" business plan event, Davis said.

Explore further: Hendersons introduce hoverboard and a future beyond wheels

More information: dl.acm.org/citation.cfm?id=248… 896&CFTOKEN=35106515

Related Stories

3D TV -- Without the Glasses (w/ Video)

Oct 29, 2009

(PhysOrg.com) -- Even with "active shutter" 3D technology for television sets, the wearing of special glasses is still required in order to get the proper experience. They aren't those red and blue or red and ...

Fujitsu unveils 'world's first' glasses-free 3D PC

Jan 12, 2011

Japanese IT services giant Fujitsu on Wednesday unveiled what it calls the world's first desktop computer with a display that enables users to see 3D images without needing special glasses.

Recommended for you

Skin icons can tap into promise of smartwatch

16 hours ago

You have heard it before: smartwatches are cool wearables but critics remind us of the fact that their small size makes many actions cumbersome and they question how many people will really have them on their ...

Japan firm showcases Bat-Signal of the future

Oct 20, 2014

A free-floating image created by firing lasers into thin air was unveiled in Japan on Monday, offering the possibility one day of projecting messages into a cloudless sky, as seen in Batman.

Do we want an augmented reality or a transformed reality?

Oct 14, 2014

It seems we are headed towards a world where augmented reality (AR) systems will be as common as smartphones are today – it's already about to revolutionise medicine, entertainment, the lives of disabled peop ...

Can it be real? Augmented reality melds work, play

Oct 14, 2014

(AP)—Mark Skwarek is surrounded by infiltrating militants in New York's Central Park. He shoots one, then hearing a noise from behind, spins to take down another. All of a sudden, everything flashes red. ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

EyeNStein
1 / 5 (3) Jul 13, 2013
The best that a right + MinusRight system could achieve is a permanent mid grey added to the image.The resulting loss of dynamic range/contrast would not be acceptable to most buyers.
Seeing a negative image when you move your head or eyes must be pretty disturbing too!