Jumping crystals: Kinematic analysis of light-induced jumping crystals

Jul 30, 2013
Jumping crystals: Kinematic analysis of light-induced jumping crystals

Live beings are not the only things that can move around – it turns out that small crystals can also rotate or even jump. Scientists from United Arab Emirates and Russia have now systematically examined crystals that move when irradiated by light. In the journal Angewandte Chemie they present the first quantitative kinematic analysis of this phenomenon, which they have termed the photosalient effect.

When irradiated with UV light, micrometer- to millimeter-sized of the coordination complex [Co(NH3)5(NO2)]Cl(NO3) cover distances over thousands of times larger than themselves. Why do they do this? The nitrite ligand (NO2) is normally bound to the central cobalt ion through its . This bond is broken by the irradiation and the rotates a little to use one of its oxygen atoms to bind to the cobalt instead. This produces strain in the crystal. The strain is dissipated through movement and fracturing. The crystals jump and may even explode.

A team led by Pan?e Naumov (New York University Abu Dhabi) and Elena V. Boldyreva (Russian Academy of Sciences and Novosibirsk State University) has now systematically analyzed this effect with a microscope-mounted, high-speed camera. The scientists distinguished the following phenomena: 1) splitting of the crystal into two roughly equally sized pieces, 2) splintering off of small pieces, 3) explosion of the crystal, 4) displacement without visible splintering or lifting off the surface, and 5) rolling or jumping. These result in some complex movement sequences of the crystals and their splinters.

The distance covered depends on the duration and intensity of the irradiation. The crystals only jump after a certain period of during which stress builds up. When it reaches a threshold, the stress is released all at once. Smaller crystals start flipping sooner than larger ones. Interestingly, the intensity of the irradiation also determines the type of effect. Intermediate intensities primarily cause rolling and jumping, higher intensities cause more splitting off of debris. The highest intensities primarily cause the crystals to split into two equal pieces.

The scientists are convinced that the effects result from a cooperative mechanism. The rotation of individual ligands causes small intramolecular perturbations that are spread and amplified over the network of hydrogen bonds connecting the ions within the crystal lattice. This network acts like a spring that is wound by the and relaxes through the movement or splitting of the crystal. The rigidity of the springs was confirmed in precise single-crystal diffraction experiments where the sample was exposed to high pressure.

The conversion of light energy to mechanical movement could be useful for the design of materials that imitate the movement of animals, or dynamic technical components in devices like nanomachines.

Explore further: Weird science: Crystals melt when they're cooled

More information: Dynamic Single Crystals: Kinematic Analysis of Photoinduced Crystal Jumping, Angewandte Chemie International Edition, dx.doi.org/10.1002/anie.201303757

Related Stories

Weird science: Crystals melt when they're cooled

May 23, 2013

(Phys.org) —Growing thin films out of nanoparticles in ordered, crystalline sheets, to make anything from microelectronic components to solar cells, would be a boon for materials researchers, but the physics ...

Uranium crystals could reveal future of nuclear fuel

Jun 25, 2013

Mention the word "crystals" and few people think of nuclear fuel. Unless you are Eric Burgett. The Idaho State University professor is on a quest to create pure, single crystals of uranium and uranium oxide ...

It's the fineness of the grind

Jul 23, 2013

The properties of nanomaterials could be easier to predict in future. Scientists from the Max Planck Institute for Intelligent Systems in Stuttgart have ground metal into continuously finer powders in steps ...

Recommended for you

A greener source of polyester—cork trees

Apr 16, 2014

On the scale of earth-friendly materials, you'd be hard pressed to find two that are farther apart than polyester (not at all) and cork (very). In an unexpected twist, however, scientists are figuring out ...

User comments : 0

More news stories

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...