Composition of splicing complex in chloroplasts identified for the first time

Jul 02, 2013 by Dr. Julia Weiler
This is a fluorescence micrograph of Chlamydomonas reinhardtii. The nucleus of the algae is marked by a green fluorescent protein, the chloroplasts fluoresce red. Credit: General and Molecular Botany, RUB

To convert a gene into a protein, a cell first crafts a blueprint out of RNA. One of the main players in this process has been identified by researchers led by Dr. Jessica Jacobs at the Ruhr-Universität Bochum. The team "fished" a large complex of proteins and RNA, which is involved in the so-called splicing, from the chloroplasts of the green alga Chlamydomonas reinhardtii. This cuts non-coding regions out of the messenger RNA, which contains the protein blueprint. "For the first time, we have established the exact composition of an unknown splicing complex of the chloroplasts", says Jacobs. She reports with her colleagues from the Department of General and Molecular Botany and the Work Group for Biomolecular Mass Spectrometry in the journal Molecular and Cellular Proteomics.

From gene to protein – craftwork required

Genes, the bearers of , contain coding and non-coding regions. To convert a gene into a protein, enzymes first create a copy of the gene, the messenger RNA. A useful blueprint for a protein is only obtained, however, when enzymes cut the non-coding regions, called introns out of the messenger RNA. Scientists call this process splicing. Large complexes of RNA and proteins are responsible for the splicing.

Components of the splicing complex identified in chloroplasts

The RUB researchers examined the splicing of the gene psaA, which is found in . These cellular constituents of plants which carry out photosynthesis probably originated from formerly free-living cyanobacteria. According to the endosymbiotic theory, the cyanobacteria lived in symbiosis with the plants and were eventually integrated into their cells. Chloroplasts therefore have their own - a relic from the cyanobacterial genome. However, the chloroplasts are dependent on the communication with the in order to be functional. The Bochum team identified the components of the protein complex that splices the chloroplast gene psaA. In the splicing complex they found 23 different proteins that are encoded in the genome of the cell nucleus. "The protein complex discovered gives us an insight into the functioning of components involved in the communication between chloroplasts and the nucleus", says Jessica Jacobs.

How to fish a splicing complex

The team carried out its investigations on the unicellular green alga Chlamydomonas reinhardtii. "We used a protein bait to fish the splicing complex out of the chloroplasts", says Jacobs. Before starting the experiment, it was known that the protein Raa4 is involved in the splicing of the psaA gene. The many interaction partners of Raa4, however, were unknown. The RUB biologists genetically altered the alga in such a way that it produced a modified form of the protein Raa4 - with a tag, i.e. a kind of "fish hook". They isolated all the proteins of the cell and filtered them through a particular material, on which only Raa4 got caught on its fish hook – along with all of its bound interaction partners. They determined the components of the splicing complex fished out with the aid of . The researchers found a splicing complex with the same composition for various environmental conditions: in light, darkness, and in an oxygen-free environment.

Explore further: Scientists throw light on the mechanism of plants' ticking clock

More information: J. Jacobs, C. Marx, V. Kock, O. Reifschneider, B. Fränzel, C. Krisp, D. Wolters, U. Kück (2013): Identification of a chloroplast ribonucleoprotein complex containing trans-splicing factors, intron RNA and novel components, Molecular and Cellular Proteomics DOI: 10.1074/mcp.M112.026583

add to favorites email to friend print save as pdf

Related Stories

Dark matter made visible before the final cut

Jan 07, 2013

Research findings from the University of North Carolina School of Medicine are shining a light on an important regulatory role performed by the so-called dark matter, or "junk DNA," within each of our genes.

Scientists turn muscular dystrophy defect on and off in cells

Jun 28, 2013

For the first time, scientists from the Florida campus of The Scripps Research Institute (TSRI) have identified small molecules that allow for complete control over a genetic defect responsible for the most common adult onset ...

Recommended for you

Fighting bacteria—with viruses

Jul 24, 2014

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

Jul 24, 2014

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

User comments : 0