Boldly illuminating biology's 'dark matter'

Jul 14, 2013
There are more microbes in, on and around the Earth than there are stars in the sky, and we only know about a small fraction of the microbial diversity around us. In an effort to learn more about the "microbial dark matter," researchers including DOE Joint Genome Institute scientists are sequencing and analyzing samples collected from locations around the world. Credit: Zosia Rostomian, Berkeley Lab

Is space really the final frontier, or are the greatest mysteries closer to home? In cosmology, dark matter is said to account for the majority of mass in the universe, however its presence is inferred by indirect effects rather than detected through telescopes. The biological equivalent is "microbial dark matter," that pervasive yet practically invisible infrastructure of life on the planet, which can have profound influences on the most significant environmental processes from plant growth and health, to nutrient cycles in terrestrial and marine environments, the global carbon cycle, and possibly even climate processes. By employing next generation DNA sequencing of genomes isolated from single cells, great strides are being made in the monumental task of systematically bringing to light and filling in uncharted branches in the bacterial and archaeal tree of life. In an international collaboration led by the Joint Genome Institute (JGI), the most recent findings from exploring microbial dark matter were published online July 14, 2013 in the journal Nature.

"Instead of wondering through the starkness of space, this achievement is more like the 21st Century equivalent of Lewis and Clark's expedition to open the American West," said Eddy Rubin, DOE JGI Director. "This is a powerful example of how the DOE JGI pioneers discovery, in that we can take a high throughput approach to isolating and characterizing single genomes from complex environmental samples of millions of cells, to provide a profound leap of understanding the on our planet. This is really the next great frontier."

This microbial dark matter campaign targeted uncultivated from nine diverse habitats: Sakinaw Lake in British Columbia; the Etoliko Lagoon of western Greece; a sludge reactor in Mexico; the Gulf of Maine; off the north coast of Oahu, Hawaii, the Tropical Gyre in the south Atlantic; the East Pacific Rise; the Homestake Mine in South Dakota; and the Great Boiling Spring in Nevada. From these samples, the team laser-sorted 9,000 cells, from which they were able to reassemble and identify 201 distinct genomes, which then could be aligned to 28 major previously uncharted branches of the tree of life.

"Microbes are the most abundant and diverse forms of life on Earth," said Tanja Woyke, DOE JGI Microbial Program Head and senior author on the Nature publication. "They occupy every conceivable environmental niche from the extreme depths of the oceans to the driest of deserts. However, our knowledge about their habits and potential benefits has been hindered by the fact that the vast majority of these have not yet been cultivated in the laboratory. So we have only recently become aware of their roles in various ecosystems through cultivation-independent methods, such as metagenomics and single-cell genomics. What we are now discovering are unexpected metabolic features that extend our understanding of biology and challenge established boundaries between the domains of life."

To learn more about microbial dark matter, sediment samples were collected from Great Boiling Spring in Nevada and sequenced. This is one of nine sampling sites for the study published in Nature July 14, 2013. Credit: Brian Hedlund, University of Nevada, Las Vegas

To get around the difficulty of growing most microbes in the lab, recent efforts have focused on conducting surveys based on sequencing marker or 16S ribosomal RNA genes that are conserved across microbial lineages because of their essential role as "housekeeping" genes—critical for the organism's survival. Genome sequencing of the rest of the genomes of most of these lineages is however proceeding much more slowly. "Microbial genome representation in the databases is quite skewed," said Chris Rinke, DOE JGI postdoctoral fellow and first author of the study. "More than three-quarters of all sequenced genomes fall into three taxonomic groups or phyla but there are over 60 phyla we know of." For the majority of them, however, there are no cultivated members available.

"Based on 16S surveys we know they're out there, but we don't know much about them—that's why we call them microbial dark matter," Woyke added. "Using modern single-cell techniques allowed us to access the genetic make-up for some of them, even without growing them in the lab."

In this effort to "seek out new life," the team's findings fell into three main areas. The first was the discovery of unexpected metabolic features. They observed certain traits in Archaea that previously only were seen in Bacteria and vice-versa. One such trait involves an enzyme that bacteria commonly use for creating space within their protective cell wall, which is needed so the cell can, for example, expand during cell division. As it rather generically cleaves the protective bacterial cell envelope, it needs to be very tightly regulated. For the first time, a group of Archaea was found to encode this potent enzyme and the authors hypothesize that Archaea may deploy it as a defense mechanism against attacking Bacteria.

The second contribution arising from the work was the correct reassignment, or binning, of data of some 340 million DNA fragments from other habitats to the proper lineage. This course correction provides insights into how organisms function in the context of a particular ecosystem as well as a much improved and more accurate understanding of the associations of newly discovered genes with resident life forms.

The third finding was the resolution of relationships within and between microbial phyla—the taxonomic ranking between domain and class—which led the team to propose two new superphyla, which are highly stable associations between phyla. The 201 genomes provided solid reference points, anchors for phylogeny—the lineage history of organisms as they change over time. "Our single-cell genomes gave us a glimpse into the evolutionary relationships between uncultivated organisms - insights that extend beyond the single locus resolution of the 16S rRNA tree and are essential for studying bacterial and archaeal diversity and evolution," Woyke said. "It's a bit like looking at a family tree to figure out who your sisters and brothers are. Here we did this for groups of organisms for which we solely have fragments of genetic information. We interpreted millions of these bits of genetic information like distant stars in the night sky, trying to align them into recognizable constellations. At first, we didn't know what they should look like, but we could estimate their relationship to each other, not spatially, but over evolutionary time." Woyke and her colleagues are pursuing a more accurate characterization of these relationships so that they can better predict metabolic properties and other useful traits that can be expressed by different groups of microbes.

Phil Hugenholtz, Director of the Australian Centre for Ecogenomics at The University of Queensland, a former DOE JGI researcher, and another one of the paper's authors reinforced the motivation for taking on this expedition of sorts. "For almost 20 years now we have been astonished by how little there is known about massive regions of the tree of life. This project is the first systematic effort to address this enormous knowledge gap. One of the most significant contributions is that based on these data, we provided names for many of these lineages which, like most star systems, were just numbered previously. For me, taxonomic assignment is important as it welcomes in strangers and makes them part of the family. Yet this is just a start. We are talking about probably millions of microbial species that remain to be described," Hugenholtz said.

Cosmologists have only mapped half of one percent of the observable universe and the path ahead in environmental genomics is similarly daunting. "There is still a staggering amount of diversity to explore," Woyke said. "To try to capture 50 percent of just the currently known phylogenetic diversity, we would have to sequence 20,000 more genomes, and these would have to be selected based on being members of underrepresented branches on the tree. And, to be sure, these are only what are known to exist."

Explore further: Streamlining a common survival strategy in marine microbes

More information: Insights into the phylogeny and coding potential of microbial dark matter, dx.doi.org/10.1038/nature12352

Related Stories

Microbial genomes help propose phylum name

Jun 05, 2013

At the phylum level, the number and diversity of unknown microbes still far outnumber those being studied. Metagenomics and single-cell genomics are tools helping researchers learn more about the "biological ...

New cost-effective genome assembly process developed

May 05, 2013

The U.S. Department of Energy Joint Genome Institute (DOE JGI) is among the world leaders in sequencing the genomes of microbes, focusing on their potential applications in the fields of bioenergy and environment. ...

First volume of microbial encyclopedia published

Dec 23, 2009

The Earth is estimated to have about a nonillion (1030) microbes in, on, around, and under it, comprised of an unknown but very large number of distinct species. Despite the widespread availability of microbi ...

Recommended for you

Researchers successfully clone adult human stem cells

Apr 18, 2014

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Researchers develop new model of cellular movement

Apr 18, 2014

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

For resetting circadian rhythms, neural cooperation is key

Apr 17, 2014

Fruit flies are pretty predictable when it comes to scheduling their days, with peaks of activity at dawn and dusk and rest times in between. Now, researchers reporting in the Cell Press journal Cell Reports on April 17th h ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

vacuum-mechanics
1 / 5 (5) Jul 14, 2013
Is space really the final frontier, or are the greatest mysteries closer to home? In cosmology, dark matter is said to account for the majority of mass in the universe, however its presence is inferred by indirect effects rather than detected through telescopes. The biological equivalent is "microbial dark matter," that pervasive yet practically invisible infrastructure of life on the planet, which can have profound influences on the most significant environmental processes from plant growth and health, to nutrient cycles in terrestrial and marine environments, the global carbon cycle, and possibly even climate processes.


This seems to be a good analogy; however it would be a better analogy if we let the invisible air atmosphere (in which all microbes are embedded) acting the same way as the cosmologic dark matter. Presence of the atmosphere has great unseen effects to the microbes' behavior, while the invisible dark matter has a huge effect on the celestial objects. Indeed it is able to perceive the unseen dark matter as easy done with the air…
http://www.vacuum...14〈=en
aroc91
not rated yet Jul 15, 2013
Pretty sure that's your most irrelevant post yet, VM.
alfie_null
not rated yet Jul 15, 2013
This seems to be a good analogy; however it would be a better analogy if we let the invisible air atmosphere (in which all microbes are embedded) acting the same way as the cosmologic dark matter. Presence of the atmosphere has great unseen effects to the microbes' behavior, while the invisible dark matter has a huge effect on the celestial objects.

Most if not all these samples were taken from liquid, not air. You don't understand biology but you speak of it with authority. Incorrectly. Why should I not expect this also to be the case in other domains of science (like the physics your crack-pot vacuum mechanics addresses).

Science isn't about coming up with touchy-feely analogies. We know you don't understand that, don't accept that, but it's irresponsible of you to try to make others believe as you do.

More news stories

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.