Biologists name a newly discovered threadworm after physicist Max Planck

Jul 09, 2013
The nematode Pristionchus maxplancki can change the shape of its mouth depending on the form of its nourishment. Credit: MPI for Developmental Biology

An unusual posthumous honour for physicist Max Planck: Biologists in Tübingen working with Ralf J. Sommer have named a newly discovered nematode after the German Nobel laureate. Pristionchus maxplancki is thus the first species to carry the name of the scientist, who died in 1947. The discovery from the Far East is assisting the researchers of the Max Planck Institute for Developmental Biology to attain new insights and knowledge about the many interdependencies between evolution, genetics, and ecology.

When Japanese biologist Natsumi Kanzaki and his German colleague Matthias Herrmann collected a from an oak forest in Fukushima province, they had no idea at the time about the surprise the impressive insect concealed: a microscopic threadworm, completely unknown to the until then, was hidden on the beetle's body.

The official name Pristionchus maxplancki was bestowed on the new discovery in honour of Max Planck (1858 – 1947). The worm, only a millimetre long, becomes the first organism to carry the name of the Nobel laureate from Göttingen.

At Herrmann's main laboratory at the Tübingen-based Max Planck Institute for Developmental Biology, Ralf Sommer leads a Research Group for integrative that focuses exclusively on the inconspicuous invertebrates of the genus Pristionchus. Biologist Erik Ragsdale is also part of this Group. His assignment in the project was to identify and characterise the mouth tools of the Pristionchus species.

Working together with Kanzaki, who conducts research at a forestry institute northeast of Tokyo, Sommer's team carried out a series of experiments on the surprising discovery from the Far East and were able to prove beyond any doubt that the Asian worm was not identical to any known species of the genus. The researchers recently published the results of these investigations in the scientific journal Zoological Science; with publication, the name Pristionchus maxplancki enters the official annals of zoology.

Sommer had originally brought back another representative of the genus, Pristionchus pacificus, to the MPI in Tübingen following a research residency in the USA in order to study the developmental phases – from the egg, through the larval stages, to the fully-grown animal. In the meantime, specialists from a spectrum of disciplines here began to closely examine the entire Pristionchus genus. Geneticists, ecologists, neuroscientists, and bio-information scientists are investigating the threadworms from each of their highly specialised perspectives, but with the common goal of understanding the evolutionary relationships, free from the often-narrow bounds in the biological sub-disciplines.

The scientists are paying particular attention, for example, to the shapes of the mouths, of which there are two clearly differentiated variants for every Pristionchus species - narrow and long, or broad and short. It is not the genes that determine whether an individual worm evolves with a narrow or a broad mouth, but rather environmental influences and available food supply. The newly discovered P. maxplancki also occurs in both of these forms, but displays several additional characteristic features in its oral cavity. Erik Ragsdale is now hoping "that P. maxplancki will finally reveal more to us about the role of the different mouth tools during the complex life cycle."

To this effect, the researchers are searching for knowledge beyond the boundaries of their Petri dishes populated by the worms. This is because representatives of the Pristionchus genus live in close association with various species of beetles. The worms do not harm their hosts through this association, they simply hold out in a dormant state until the beetle dies. These hitchhikers and their numerous progeny then nourish themselves from the cadaver of the beetle and from the fungi and bacteria that grow on the insect's remains insect. This lifestyle has evidently favoured the broad spreading of the inconspicuous little creatures, as examples of Pristionchus in the Tübingen worm zoo come from discovery sites on all of the continents.

Sommer's associate Matthias Herrmann, a specialist in biogeography and a tireless explorer and collector, would therefore like to know where the original habitat of the genus lies, and how it conquered the world. The from Japan is providing important leads here as well: genetic trees constructed with DNA data from P. maxplancki together with an additional, newly discovered species, suggest that the origin of the genus lies in Southeast Asia and thus in the habitat of P. maxplancki. Accordingly, Pristionchus spread from there throughout the entire world – possibly piggybacked on invasive beetle species.

Over the coming years, the Tübingen-based team wants to learn in detail how the complex life cycle, the variety of forms of the worms, and their global spread are connected – and thereby understand how evolution continues to produce new forms through the interplay of external and internal influences, of habitat and genes.

Max Planck constantly emphasised the importance of exact observations and precise inspection as the actual core of scientific work. In that regard, it is also completely appropriate for a worm living in concealment, yet illuminating fundamental processes of nature to keen-eyed observers, to now be named after him.

Explore further: Rare new species of plant: Stachys caroliniana

More information: Two New Species of Pristionchus (Nematoda: Diplogastridae) Support the Biogeographic Importance of Japan for the Evolution of the Genus Pristionchus and? the Model System P. pacificus. Zoological Science 30, August 2013. DOI: 10.2108/zsj.30.000

add to favorites email to friend print save as pdf

Related Stories

A worm bites off enough to chew (w/ Video)

Jul 01, 2010

Dramatic scenes are played out under Ralf Sommer's microscope: his research object, the roundworm Pristionchus pacificus, bites another worm, tears open a hole in its side and devours the oozing contents. The sq ...

The neurobiological consequence of predating or grazing

Jan 17, 2013

Researchers in the group of Ralf Sommer at the Max Planck Institute for Developmental Biology in Tuebingen, Germany, have for the first time been able to identify neuronal correlates of behaviour by comparing ...

An island as a reflection of the world

May 19, 2010

(PhysOrg.com) -- Nematodes, which are tiny worms, can be found in virtually every ecosystem throughout the world, and count as one of the most biologically diverse groups in the animal kingdom. The biologists ...

Recommended for you

New mushroom discovered on campus is the first since 1985

3 minutes ago

Two researchers who recently named the first new species of mushroom from the UC Berkeley campus in more than 30 years are emphasizing the need for continued green and open space on campus, as well as a full-fledged ...

Rare new species of plant: Stachys caroliniana

Nov 21, 2014

The exclusive club of explorers who have discovered a rare new species of life isn't restricted to globetrotters traveling to remote locations like the Amazon rainforests, Madagascar or the woodlands of the ...

Mysterious glowworm found in Peruvian rainforest

Nov 21, 2014

(Phys.org) —Wildlife photographer Jeff Cremer has discovered what appears to be a new type of bioluminescent larvae. He told members of the press recently that he was walking near a camp in the Peruvian ...

The unknown crocodiles

Nov 21, 2014

Just a few years ago, crocodilians – crocodiles, alligators and their less-known relatives – were mostly thought of as slow, lazy, and outright stupid animals. You may have thought something like that ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.