Bacteria communicate to help each other resist antibiotics

Jul 03, 2013

New research from Western University unravels a novel means of communication that allows bacteria such as Burkholderia cenocepacia (B. cenocepacia) to resist antibiotic treatment. B. cenocepacia is an environmental bacterium that causes devastating infections in patients with cystic fibrosis (CF) or with compromised immune systems.

Dr. Miguel Valvano and first author Omar El-Halfawy, PhD candidate, show that the more antibiotic resistant cells within a produce and share small molecules with less , making them more resistant to antibiotic killing. These small molecules, which are derived from modified amino acids (the building blocks used to make proteins), protect not only the more sensitive cells of B. cenocepacia but also other bacteria including a highly prevalent CF pathogen, Pseudomonas aeruginosa, and E. coli. The research is published in PLOS ONE.

"These findings reveal a new mechanism of antimicrobial resistance based on chemical communication among by small molecules that protect against the effect of antibiotics," says Dr. Valvano, adjunct professor in the Department of Microbiology and Immunology at Western's Schulich School of Medicine & Dentistry, currently a Professor and Chair at Queen's University Belfast. "This paves the way to design novel drugs to block the effects of these chemicals, thus effectively reducing the burden of antimicrobial resistance."

"These small molecules can be utilized and produced by almost all bacteria with limited exceptions, so we can regard these small molecules as a universal language that can be understood by most bacteria," says El-Halfawy, who called the findings exciting. "The other way that Burkholderia communicates its high level of resistance is by releasing small proteins to mop up, and bind to lethal antibiotics, thus reducing their effectiveness." The next step is to find ways to inhibit this phenomenon.

The research, conducted at Western, was funded by a grant from Cystic Fibrosis Canada and also through a Marie Curie Career Integration grant.

Explore further: Harnessing the power of viruses to improve wastewater treatment

More information: The paper, titled "Chemical communication of antibiotic resistance by a highly resistant subpopulation of bacterial cells," can be found at: dx.plos.org/10.1371/journal.pone.0068874

add to favorites email to friend print save as pdf

Related Stories

Key found to kill cystic fibrosis superbug

Apr 24, 2007

Researchers from the Schulich School of Medicine & Dentistry at The University of Western Ontario , working with a group from Edinburgh, have discovered a way to kill the cystic fibrosis superbug, Burkholderia cenocepacia.

Recommended for you

New insights in survival strategies of bacteria

9 hours ago

Bacteria are particularly ingenious when it comes to survival strategies. They often create a biofilm to protect themselves from a hostile environment, for example during treatment with antibiotics. A biofilm is a bacterial ...

Team makes scientific history with new cellular connection

Sep 11, 2014

Researchers led by Dr. Helen McNeill at the Lunenfeld-Tanenbaum Research Institute have revealed an exciting and unusual biochemical connection. Their discovery has implications for diseases linked to mitochondria, ...

Researchers discover new producer of crucial vitamin

Sep 11, 2014

(Phys.org) —New research has determined that a single group of micro-organisms may be responsible for much of the world's vitamin B12 production in the oceans, with implications for the global carbon cycle and climate change.

How bacteria battle fluoride

Sep 11, 2014

He's not a dentist, but Christopher Miller is focused on fluoride. Two studies from his Brandeis University lab provide new insights into the mechanisms that allow bacteria to resist fluoride toxicity, information ...

User comments : 0