Ultrasound to improve algae harvest

Jun 28, 2013
Ultrasound to improve algae harvest

Scientists from the National Physical Laboratory (NPL) are using ultrasound to reduce the amount of energy needed to harvest microalgae.

Around 7,000 tons of microalgae is grown and used each year for a wide variety of applications, from feeds to pharmaceuticals. However, the harvesting process uses a large amount of energy because the concentration of algae produced is very low, around 0.5% when grown in photobioreactors or open ponds. This means that almost all of the material that ends up in centrifuges to separate out the algae is water.

The Algaemax project is funded by the European Commission under the Seventh Framework Programme, and is part of the Research for SME's (R4SME) scheme. It aims to reduce the amount of energy needed to harvest algae.

NPL is working alongside partners from Spain, the Netherlands, Turkey and the UK to develop an -based flow processor, which will harness low power sound to increase the concentration of algae prior to harvesting and reduce the processing costs.

The Algaemax Flowcell will create acoustic standing waves in the liquid, which will generate local forces on particles, causing the algae to clump together. The designed cell will produce an algae-enhanced fluid at a concentration level or around 5%, which will then be separated out using commercial technologies.

The technical challenges include maintaining the resonant in the constantly changing fluid and ensuring that the is not destroyed by high acoustic pressures through the process of cavitation. This is where bubbles are formed and implode within a liquid creating high temperatures and pressures.

NPL will test design concepts, carry out theoretical modelling and liaise with suppliers to build and operate the Algaemax Flowcell in a laboratory environment.

Explore further: Heaven scent: Finding may help restore fragrance to roses

More information: www.algaemax.eu/

Related Stories

Seeing sound in a new light

Nov 24, 2011

The National Physical Laboratory Acoustics team has been investigating acoustic cavitation – the formation and implosion of micro cavities, or bubbles, in a liquid caused by the extreme pressure variations ...

Novel testing device for detecting toxic blue-green algae

Jun 24, 2013

VTT Technical Research Centre of Finland has developed a fast and affordable testing device for detecting the presence of toxic blue-green algae in water. There is currently no fast, affordable and user-friendly way for consumers ...

Biologists produce rainbow-colored algae

Mar 07, 2013

What can green algae do for science if they weren't, well, green? That's the question biologists at UC San Diego sought to answer when they engineered a green alga used commonly in laboratories, Chlamydomonas reinhardtii, into a ...

Recommended for you

Study on pesticides in lab rat feed causes a stir

Jul 02, 2015

French scientists published evidence Thursday of pesticide contamination of lab rat feed which they said discredited historic toxicity studies, though commentators questioned the analysis.

International consortium to study plant fertility evolution

Jul 02, 2015

Mark Johnson, associate professor of biology, has joined a consortium of seven other researchers in four European countries to develop the fullest understanding yet of how fertilization evolved in flowering plants. The research, ...

Making the biofuels process safer for microbes

Jul 02, 2015

A team of investigators at the University of Wisconsin-Madison and Michigan State University have created a process for making the work environment less toxic—literally—for the organisms that do the heavy ...

Why GM food is so hard to sell to a wary public

Jul 02, 2015

Whether commanding the attention of rock star Neil Young or apparently being supported by the former head of Greenpeace, genetically modified food is almost always in the news – and often in a negative ...

The hidden treasure in RNA-seq

Jul 01, 2015

Michael Stadler and his team at the Friedrich Miescher institute for Biomedical Research (FMI) have developed a novel computational approach to analyze RNA-seq data. By comparing intronic and exonic RNA reads, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.