Progressive traffic signal systems save time and fuel

Jun 21, 2013
Progressive traffic signal systems outside of cities reduce journey times and fuel consumption up to 20 percent. A driver information system informs about the signaling ahead. Credit: Andreas Haslbeck / Technische Universitaet Muenchen

In cities, the uniform and low speed levels simplify the setup of synchronized traffic signals. Outside urban areas this is a bigger challenge: The travel speeds vary more and the distances between the traffic lights are often much larger. Researchers at the Technische Universitaet Muenchen, the BMW Group, the TRANSVER GmbH and the Supreme Building Authority in the Bavarian Ministry of the Interior have presented the results of their investigation into how progressive traffic systems can also be set up on arterial roads outside of cities.

As test tracks they selected a section of the federal road B13 in the north of Munich and a section of the state road 2145 near Regensburg. A first major challenge was to integrate the lights on the test tracks, which were up to 20 years old and supplied by different manufacturers, into a unified communications and control structure. From the data obtained in the analysis of traffic flows on these routes, the researchers then developed different control concepts, a fixed-time control and a demand-responsive coordination.

Although the test route in the north of Munich is only five kilometers long, the light control scheme developed in the project reduces the travel time by about a minute. The best results are achieved by a dynamic, traffic-actuated model. Due to a reduction of stops at signalized intersections, the mean waiting time is reduced from about one minute to seven seconds. An optimized fixed-time control nevertheless still reaches a saving of 30 seconds, thus halving the waiting period. The intelligent control increases the share of intersections that can be passed without stops from about 60 percent to almost 100 percent.

In addition to the intelligent traffic light control, the researchers developed a driver information system. The transmit their data via mobile network to the headquarters of TRANSVER GmbH, where a computer processes the data and sends information on signalization to the vehicles. A vehicle's on-board computer or an application on a smart phone indicates whether the vehicle is moving with the appropriate speed in order to reach a green light at the next intersection. The range of possible speed recommendations is shown by means of a "green carpet" on the smartphone's or on-board computer's display. "This is especially helpful when approaching the first traffic light, but also animates to adjust the driving speed," says Michael Krause of the Institute of Ergonomics at the TU Muenchen. "Particular care was also taken to ensure that the additional information does not distract the driver."

Staff and volunteers traveled thousands of kilometers in the simulator and on the test tracks to test the effects of different control options. "Rigid programs allow a very good forecast of traffic signal timings. This is a good foundation for the driver information system," says Dr.-Ing. Alexander Dinkel, project manager at TRANSVER GmbH. "However, a dynamic traffic control takes into account the variability and dynamics of traffic not only in the main direction but also of the cross traffic. Overall, the intelligent approach produces the best results. "

With a trick, the researchers succeeded in combining the advantages of both systems: They defined a core area, symbolized by a green band on the display. Based on the static signal timings it shows the time interval in which a green light will reliably be reached. The dynamics take place only in adjoining areas, allowing the system to respond to different traffic loads on the main track and the cross traffic.

Explore further: Researchers use passive UHF RFID tags to detect how people interact with objects

Related Stories

Networked cars make traffic safer and more efficient

Jun 20, 2013

Vehicles and infrastructures exchanging information with one another and notifying drivers about dangers and traffic situations make traffic safer and more efficient. This has been proven by one of the biggest ...

Cell phone signals help manage traffic

Sep 26, 2011

In a pilot project in Texas, Siemens is developing intelligent transportation technology for the fast and orderly evacuation of citizens. In this project, traffic light timing systems register traffic flow ...

Smart traffic lights reduce fuel usage and lower emissions

Oct 27, 2010

( -- Denso Corp. has designed the next version of 'the smart traffic light system'. By using messaging between vehicles and the traffic-light controller, better decisions about when to change signaling ...

120 intelligent cars warn each other in the test

Aug 06, 2012

One of the largest fleet tests in the world was launched today in Germany. 120 cars hit the road to test a system known as simTD, a technology that enables vehicles to communicate with each other and their environment. Cars ...

Recommended for you

Intellectual property in 3D printing

Apr 16, 2015

The implications of intellectual property in 3D printing have been outlined in two documents created for the UK government by Bournemouth University's Dinusha Mendis and Davide Secchi, and Phil Reeves of Econolyst Ltd.

World-record electric motor for aircraft

Apr 16, 2015

Siemens researchers have developed a new type of electric motor that, with a weight of just 50 kilograms, delivers a continuous output of about 260 kilowatts – five times more than comparable drive systems. ...

Space open for business, says Electron launch system CEO

Apr 15, 2015

Space, like business, is all about time and money, said Peter Beck, CEO of Rocket Lab, a US company with a New Zealand subsidiary. The problem, he added, is that, in cost and time, space has remained an incredibly ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.