Researchers engineer synthetic pathways for new antibacterial treatments

June 19, 2013
Researchers engineer synthetic pathways for new antibacterial treatments
Credit: Shutterstock

Bacteria, for the most part, thrive in extreme temperatures and in arid conditions. But some types of bacteria have the capacity to do this and more: they grow within diverse environments and adapt easily. One such species is the Bacillus subtilis. Known to make its home in soil and in water, researchers have also found evidence that B. subtilis is frequently present in the human gut.

B. subtilis forms endospores that can protect it from nutrient deprivation. Researchers have seized on this and frequently use the genetically controllable bacterium as a cell factory in biotechnology. Enter BASYNTHEC ('Bacterial synthetic minimal genomes for biotechnology'), a project launched in 2010. It sought to develop a model-based approach for engineering B. subtilis and create synthetic modules for producing metabolites and proteins of interest. Ultimately, the research could lead to new antimicrobial treatments for bacterial infections.

But the results could also lead to better strain safety, reducing the ability of strains being able to survive and diminishing the unwanted side effects that all have. This, in turn, would lead to both fewer accidental gene transfers and unwanted interactions with the environment, humans or products.

The project is supported under the 'Knowledge-based bioeconomy' theme of the Seventh Framework Programme (FP7). Led by the Institut National de la Recherche Agronomique (INRA) in France, the project partners used computational and with novel high-throughput methodologies to alter and reduce the chromosome of this particular strain 'à la carte'.

The team produced, collected and subjected hundreds of deleted strains (strains in which part of a single chromosome has been lost) to high-throughput screening for antimicrobial targets and other applications. The BASYNTHEC team also engineered for and for production of vitamin B5, enabling the researchers to test their full potential. A patent application based on this work has been filed.

The consortium started from the conviction that it was necessary to identify both new antimicrobials for bacterial infection treatment, and targets within the bacterial cell for antimicrobials. The deletion strains generated in the study allowed the researchers to determine which strains are relatively resistant to Sublancin 168, a B. subtilis-triggered antimicrobial peptide that has the capacity to destroy several certain organisms.

There are many companies manufacturing enzymes for the pharmaceutical industry. The Bacillus species is already recognised for its low cost and efficiency in production chains, but there is still room for improvement - for example by eliminating the unwanted side effects during production. The team is hopeful that combining the BASYNTHEC modelling framework with validated and less complex bacterial strains will encourage scientists to use it as a generic biotechnological platform for better control and cell metabolism manipulation during industrial processes.

The BASYNTHEC team brought together experts from Novozymes A/S (Denmark), INRA Transfert (France), Ernst-Moritz-Arndt-Universität Greifswald (Germany), Academisch Ziekenhuis Groningen (Netherlands), DSM Nutritional Products (Switzerland), Eidgenössische Technische Hochschule Zürich (Switzerland) and the University of Chicago (United States).

Explore further: Pioneering research on Bacillus subtilis metabolism reveals bacterium's secrets

More information: BASYNTHEC: www.basynthec.eu/
Institut National de la Recherche Agronomique (INRA): www.inra.fr/en/

Related Stories

Harnessing the power of killer bacteria

June 19, 2012

(Phys.org) -- Scientists at The University of Nottingham have discovered new clues about a potential weapon in the fight against a dangerous superbug which is becoming increasingly resistant to usual forms of treatment.

New non-toxic disinfectant could tackle hospital infections

August 7, 2012

A new disinfectant, Akwaton, that works at extremely low concentrations could be used in healthcare settings to help control persistent hospital-acquired infections such as Clostridium difficile. The study is reported online ...

The determining factors of cell shape examined

October 4, 2012

A European team is investigating the role of the bacterial cell wall and the cytoskeleton in mediating cell shape. Results are expected to have broader implications for cell biology.

Recommended for you

Ancient walnut forests linked to languages, trade routes

September 4, 2015

If Persian walnut trees could talk, they might tell of the numerous traders who moved along the Silk Roads' thousands of miles over thousands of years, carrying among their valuable merchandise the seeds that would turn into ...

Huddling rats behave as a 'super-organism'

September 3, 2015

Rodents huddle together when it is cold, they separate when it is warm, and at moderate temperatures they cycle between the warm center and the cold edges of the group. In a new study published in PLOS Computational Biology, ...

Fighting explosives pollution with plants

September 3, 2015

Biologists at the University of York have taken an important step in making it possible to clean millions of hectares of land contaminated by explosives.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.