Programming model for supercomputers of the future

Jun 10, 2013
Dr. Carsten Lojewski, Dr. Christian Simmendinger, Rui Machado (from left to right) developed a programming model that uses high- performance computers as efficiently as possible. Credit: Dirk Mahler/Fraunhofer

The demand for even faster, more effective, and also energy-saving computer clusters is growing in every sector. The new asynchronous programming model GPI from Fraunhofer ITWM might become a key building block towards realizing the next generation of supercomputers.

High-performance computing is one of the key technologies for numerous applications that we have come to take for granted – everything from searches to weather forecasting and to bioinformatics requires an ever increasing amount of computing ressources. Big data analysis additionally is driving the demand for even faster, more effective, and also energy-saving . The number of processors per system has now reached the millions and looks set to grow even faster in the future. Yet something has remained largely unchanged over the past 20 years and that is the programming model for these supercomputers. The (MPI) ensures that the microprocessors in the distributed systems can communicate. For some time now, however, it has been reaching the limits of its capability.

"I was trying to solve a calculation and simulation problem related to seismic data," says Dr. Carsten Lojewski from the Fraunhofer Institute for ITWM. "But existing methods weren't working. The problems were a lack of scalability, the restriction to bulk-synchronous, two-sided communication, and the lack of . So out of my own curiosity I began to develop a new programming model." This development work ultimately resulted in the Global Address Space – or GPI – which uses the parallel architecture of high-performance computers with .

GPI is based on a completely new approach: an asynchronous communication model, which is based on remote completion. With this approach, each processor can directly access all data – regardless of which memory it is on and without affecting other parallel processes. Together with Rui Machado, also from Fraunhofer ITWM, and Dr. Christian Simmendinger from T-Systems Solutions for Research, Dr. Carsten Lojewski is receiving a Joseph von Fraunhofer prize this year.

Like the programming model of MPI, GPI was not developed as a parallel programming language, but as a parallel programming interface, which means it can be used universally. The demand for such a scalable, flexible, and fault-tolerant interface is large and growing, especially given the exponential growth in the number of processors in supercomputers.

Initial sample implementations of GPI have worked very successfully: "High-performance computing has become a universal tool in science and business, a fixed part of the design process in fields such as automotive and aircraft manufacturing," says Dr. Christian Simmendinger. "Take the example of aerodynamics: one of the simulation cornerstones in the European aerospace sector, the software TAU, was ported to the GPI platform in a project with the German Aerospace Center (DLR). GPI allowed us to significantly increase parallel efficiency."

Even though is a tool for specialists, it has the potential to revolutionize algorithmic development for high-performance software. It is considered a key component in enabling the next generation of supercomputers – exascale computers, which are 1,000 times faster than the mainframes of today.

Explore further: Communication-optimal algorithms for contracting distributed tensors

add to favorites email to friend print save as pdf

Related Stories

Fewer Faults for Faster Computing

Mar 28, 2011

(PhysOrg.com) -- Environmental Molecular Sciences Laboratory (EMSL) users have designed and implemented an efficient fault-tolerant version of the coupled cluster method for high-performance computational ...

Intel flirts with exascale leap in supercomputing

Jun 19, 2012

(Phys.org) -- If exascale range is the next destination post in high-performance computing then Intel has a safe ticket to ride. Intel says its new Xeon Phi line of chips is an early stepping stone toward ...

Recommended for you

Microsoft unveils Xbox in China as it faces probe

10 hours ago

Microsoft on Wednesday unveiled its Xbox game console in China, the first to enter the market after an official ban 14 years ago, even as it faces a Chinese government probe over business practices.

Teens love vacation selfies; adults, not so much

10 hours ago

(AP)—Jacquie Whitt's trip to the Galapagos with a group of teenagers was memorable not just for the scenery and wildlife, but also for the way the kids preserved their memories. It was, said Whitt, a "selfie ...

Tiny UAVs and hummingbirds are put to test

11 hours ago

Hummingbirds in nature exhibit expert engineering skills, the only birds capable of sustained hovering. A team from the US, British Columbia, and the Netherlands have completed tests to learn more about the ...

US spy agency patents car seat for kids

13 hours ago

Electronic eavesdropping is the National Security Agency's forte, but it seems it also has a special interest in children's car seats, Foreign Policy magazine reported Wednesday.

User comments : 0