A burst of stars 13 billion years ago

Jun 03, 2013
An artist's conception of the Herschel Space Observatory. Far-infrared images from Herschel were used to discover the earliest known galaxy undergoing a massive starburst, only about 880 million years after the big bang. Credit: ESA

(Phys.org) —The universe immediately following the big bang contained mostly hydrogen and some helium. All the other elements needed to make galaxies, planets, and life were formed in stellar interiors or related processes. It is no wonder, then, that the epoch of star formation in the early universe, and the processes at work, are key cosmological questions. Astronomers think that stars started forming in earnest only a few hundred million years after the big bang, but the great bursts of star formation needed to shape the current universe have so far been detected occurring a few billion years later, in galaxies lit up at infrared wavelengths as their dust absorbs light from massive young stars. It has been proposed that similar bursts of activity might actually have happened at earlier times but just gone undetected. They are unnoticed no longer.

Writing in a recent issue of Nature, CfA astronomers Mark Gurwell and Glen Petitpas and a large team of colleagues report finding a galaxy undergoing a massive burst of star formation only about 880 million years after the big bang. The object appears to be making new stars at rate 2000 times faster than does our - or nearly 3000 stars per year. Moreover the temperature of its dust is about three times warmer than Milky Way gas, an additional measure of the dramatic activity underway. In fact, this galaxy seems to be comparable in its activity to most dramatic cases known anywhere, at any cosmic epoch. The scientists spotted it in infrared images from the Herschel , and they determined its distance and epoch by precisely measuring the redshifts of the emission in over a dozen atomic and molecular lines.

Further analysis by the team finds that the galaxy contains over one hundred million solar-masses of warm material, and confirms that the gas is indeed heated by star formation rather than by activity from a at its nucleus. The astronomers note that although these stupendous star factories are not all that common in very early times (large numbers of them are not seen in the Herschel images), this one proves for the first time that environments suitable for producing massive starbursts do exist much earlier than had been expected.

Explore further: Is the universe finite or infinite?

add to favorites email to friend print save as pdf

Related Stories

Making stars in early galaxies

Dec 10, 2012

(Phys.org)—Ten billion years ago or so, at least according to the current picture, the youthful universe began to produce an abundance of new stars. The very first ones appeared in the young cosmos after ...

Image: Hubble sees a swirl of star formation

May 27, 2013

(Phys.org) —This beautiful, glittering swirl is named, rather un-poetically, J125013.50+073441.5. A glowing haze of material seems to engulf the galaxy, stretching out into space in different directions ...

Hubble catches the moment the lights went out

Feb 06, 2013

(Phys.org)—The further away you look, the further back in time you see. Astronomers use this fact to study the evolution of the Universe by looking at nearby and more distant galaxies and comparing their ...

Galaxies in the young cosmos

May 21, 2012

(Phys.org) -- The universe was born about 13.7 billion years ago in the big bang. The Sun and its system of planets formed about five billion years ago. What happened, then, during that long, intervening stretch ...

Recommended for you

Is the universe finite or infinite?

Mar 27, 2015

Two possiblities exist: either the Universe is finite and has a size, or it's infinite and goes on forever. Both possibilities have mind-bending implications.

'Teapot' nova begins to wane

Mar 27, 2015

A star, or nova, has appeared in the constellation of Sagittarius and, even though it is now waning, it is still bright enough to be visible in the sky over Perth through binoculars or a telescope.

Dark matter is darker than once thought

Mar 27, 2015

This panel of images represents a study of 72 colliding galaxy clusters conducted by a team of astronomers using NASA's Chandra X-ray Observatory and Hubble Space Telescope. The research sets new limits on ...

Galaxy clusters collide—dark matter still a mystery

Mar 26, 2015

When galaxy clusters collide, their dark matters pass through each other, with very little interaction. Deepening the mystery, a study by scientists at EPFL and the University of Edinburgh challenges the ...

Using 19th century technology to time travel to the stars

Mar 26, 2015

In the late 19th century, astronomers developed the technique of capturing telescopic images of stars and galaxies on glass photographic plates. This allowed them to study the night sky in detail. Over 500,000 ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.