New computer simulations help scientists understand how—and why—viruses spread

Jun 18, 2013

It's not a hacker lab. At Brandeis University, sophisticated computational models and advances in graphical processing units are helping scientists understand the complex interplay between genomic data, virus structure and the formation of the virus' outer "shell"—critical for replication.

"We hope that some of what we are finding will help researchers alter virus assembly, leaving viruses unable to replicate," says post-doctoral fellow Jason Perlmutter, first author of the scientific paper describing the technique, published in the open access journal eLife.

Scientists know that many viruses are able to hijack the genetic machinery of host cells to produce copies of themselves and spread infection from cell to cell. For many virus families, a key part of this process is the formation of a protein "shell," called a capsid, around the during the assembly process.

The physics of this assembly process, which involves interactions between the negatively charged nucleic acid genome and the positively charged capsid protein, depends on a number of factors related to the structure of the virus genome.

"Changing all these critical genomic parameters in a live virus and looking at how capsid formation behaves is impossible given the speed of the process and our current imaging techniques," says associate professor of physics Michael Hagan, whose lab conducted the study.

That's why the team's modeling approach—the most realistic developed to date—is so important to scientists who are interested in how the virus capsid protein assembles around its genome in the cell. The Brandeis team used their modeling tool to calculate the optimal genome for a number of specific —which vary in size, shape and surface properties.

"If you take the model and apply it to biological viruses, we are able to predict within a narrow range key structural features of the and, by extension, how these parameters control whether the capsid assembles or misassembles and what misassembly looks like," says Perlmutter.

"Our tool should help scientists better understand the relationship between viral structure and packaging, making it easier to develop antiviral agents as well as aid the redesign of viruses for use in gene therapy and drug delivery."

Explore further: How plant cell compartments change with cell growth

add to favorites email to friend print save as pdf

Related Stories

Do-it-yourself viruses: How viruses self assemble

Dec 16, 2012

A new model of the how the protein coat (capsid) of viruses assembles, published in BioMed Central's open access journal BMC Biophysics, shows that the construction of intermediate structures prior to fin ...

Recommended for you

How plant cell compartments change with cell growth

Aug 22, 2014

A research team led by Kiminori Toyooka from the RIKEN Center for Sustainable Resource Science has developed a sophisticated microscopy technique that for the first time captures the detailed movement of ...

Plants can 'switch off' virus DNA

Aug 22, 2014

A team of virologists and plant geneticists at Wageningen UR has demonstrated that when tomato plants contain Ty-1 resistance to the important Tomato yellow leaf curl virus (TYLCV), parts of the virus DNA ...

A better understanding of cell to cell communication

Aug 22, 2014

Researchers of the ISREC Institute at the School of Life Sciences, EPFL, have deciphered the mechanism whereby some microRNAs are retained in the cell while others are secreted and delivered to neighboring ...

A glimpse at the rings that make cell division possible

Aug 22, 2014

Forming like a blown smoke ring does, a "contractile ring" similar to a tiny muscle pinches yeast cells in two. The division of cells makes life possible, but the actual mechanics of this fundamental process ...

User comments : 0