Scientists reconstruct the genome of medieval strains of the pathogen responsible for leprosy

June 13, 2013
Humans appear to be the ones who adapted to leprosy, causing its decline in Europe. Credit: EPFL

Why was there a sudden drop in the incidence of leprosy at the end of the Middle Ages? To answer this question, biologists and archeologists reconstructed the genomes of medieval strains of the pathogen responsible for the disease, which they exhumed from centuries old human graves. Their results, published in the journal Science, shed light on this obscure historical period and introduce new methods for understanding epidemics.

In , was a common disease. The specter of the leper remains firmly entrenched in our : a person wrapped in homespun cloth, announcing his presence in the streets by ringing a bell. The image is not unfounded. In certain areas it is estimated that nearly one in 30 people were infected with the disease.

But at the turn of the 16th century, the disease abruptly receded over most of the continent. The event was both sudden and inexplicable. Perhaps the pathogen that causes leprosy had evolved into a less harmful form? To find out, an international team of biologists and joined forces. They decoded the nearly complete genomes from five strains of Mycobacterium leprae, the responsible for leprosy, which they collected and reproduced by digging up the remains of humans buried in medieval graves.

Reconstructing the bacterial genomes was no easy task, as the material available—from old —contained less than 0.1% of . The researchers developed an extremely sensitive method for separating the two kinds of DNA and for reconstituting the target genomes with an unprecedented level of precision. "We were able to reconstruct the genome without using any contemporary strains as a basis," explains study co-author and EPFL scientist Pushpendra Singh, who worked closely with Johannes Kraus and team from Tubingen University in Germany.

Natural selection in action

The results are indisputable: the genomes of the medieval strains are almost exactly the same as that of contemporary strains, and the mode of spreading has not changed. "If the explanation of the drop in leprosy cases isn't in the pathogen, then it must be in the host, that is, in us; so that's where we need to look," explains Stewart Cole, co-director of the study and the head of EFFL's Global Health Institute.

Many clues indicate that humans developed resistance to the disease. All the conditions were ripe for an intense process of natural selection: a very high prevalence of leprosy and the social isolation of diseased individuals. "In certain conditions, victims could simply be pressured not to procreate," Cole says. "In addition, other studies have identified genetic causes that made most Europeans more resistant than the rest of the world population, which also lends credence to this hypothesis."

Tracing the path of pathogens from Scandinavia to the Middle East

One interesting thing the researchers discovered was a medieval strain of Mycobacterium leprae in Sweden and the U.K. that is almost identical to the strain currently found in the Middle East. "We didn't have the data to determine the direction in which the epidemic spread. The pathogen could have been carried to Palestine during the Crusades. But the process could have operated in the opposite direction, as well."

In addition to the historical significance of the research, the study in Science is important in that it improves our understanding of epidemics, as well as how the leprosy pathogen operates. Sequencing methods designed as part of this research are among the most precise ever developed, and could enable us to track down many other that are lurking in foreign DNA. In addition, the incredible resistance of Mycobacterium leprae's genetic material – probably due to its thick cell walls – opens up the possibility of going even further back in history to uncover the origins of this disease that still affects more than 200,000 people worldwide each year.

Explore further: The entwined destinies of mankind and leprosy bacteria

More information: Genome-wide comparison of medieval and modern Mycobacterium leprae, Science Express, 13 June 2013.

Related Stories

The entwined destinies of mankind and leprosy bacteria

November 2, 2009

Leprosy still affects hundreds of thousands of people today throughout the entire world. An international team headed by EPFL professor Stewart Cole has traced the history of the disease from ancient Egypt to today and in ...

'Whodunnit' of Irish potato famine solved

May 21, 2013

An international team of scientists reveals that a unique strain of potato blight they call HERB-1 triggered the Irish potato famine of the mid-19th century.

100K Pathogen Genome Project maps first genomes

May 22, 2013

(Phys.org) —Striking a blow at foodborne diseases, the 100K Pathogen Genome Project at the University of California, Davis, today announced that it has sequenced the genomes of its first 10 infectious microorganisms, including ...

Recommended for you

Researchers design first artificial ribosome

July 29, 2015

Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins ...

Studies reveal details of error correction in cell division

July 29, 2015

Cell biologists led by Thomas Maresca at the University of Massachusetts Amherst, with collaborators elsewhere, report an advance in understanding the workings of an error correction mechanism that helps cells detect and ...

Researchers discover new type of mycovirus

July 29, 2015

Researchers, led by Dr Robert Coutts, Leverhulme Research Fellow from the School of Life and Medical Sciences at the University of Hertfordshire, and Dr Ioly Kotta-Loizou, Research Associate at Imperial College, have discovered ...

Stressed out plants send animal-like signals

July 29, 2015

University of Adelaide research has shown for the first time that, despite not having a nervous system, plants use signals normally associated with animals when they encounter stress.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.