Scientists design a potential drug compound that attacks Parkinson's disease on two fronts

Jun 20, 2013

Scientists from the Florida campus of The Scripps Research Institute (TSRI) have found a compound that could counter Parkinson's disease in two ways at once.

In a new study published recently online ahead of print by the journal ACS Chemical Biology, the scientists describe a "dual inhibitor"- two compounds in a single molecule— that attacks a pair of proteins closely associated with development of Parkinson's disease.

"In general, these two enzymes amplify the effect of each other," said team leader Phil LoGrasso, a TSRI professor who has been a pioneer in the development of JNK inhibitors for the treatment of . "What we were looking for is a high-affinity, high-selectivity treatment that is additive or synergistic in its effect—a one-two punch."

That could be what they found.

This new dual inhibitor attacks two enzymes—the leucine-rich repeat kinase 2 (LRRK2) and the c-jun-N-terminal kinase (JNK)—pronounced "junk." Genetic testing of several thousand Parkinson's patients has shown that mutations in the LRRK2 gene increase the risk of Parkinson's disease, while JNK has been shown to play an important role in neuron (nerve cell) survival in a range of neurodegenerative diseases. As such, they have become highly viable targets for drugs to treat disorders such as Parkinson's disease.

A dual inhibitor ultimately would be preferred over separate individual JNK and LRRK2 inhibitors because a combination molecule would eliminate complications of drug-drug interactions and the need to optimize individual inhibitor doses for efficacy, the study noted.

Now the team's new dual inhibitor will need to be optimized for potency, high selectivity (which reduces off-target side effects) and so it can be tested in animal models of Parkinson's disease.

Explore further: Structure of sodium channels different than previously believed

More information: "A Small Molecule Bidentate-Binding Dual Inhibitor Probe of the LRRK2 and JNK Kinases," pubs.acs.org/doi/abs/10.1021/cb3006165

Related Stories

Scientists find way to block stress-related cell death

Jun 02, 2011

Scientists from the Florida campus of The Scripps Research Institute have uncovered a potentially important new therapeutic target that could prevent stress-related cell death, a characteristic of neurodegenerative diseases ...

Recommended for you

Breakthrough points to new drugs from nature

Apr 16, 2014

Researchers at Griffith University's Eskitis Institute have developed a new technique for discovering natural compounds which could form the basis of novel therapeutic drugs.

World's first successful visualisation of key coenzyme

Apr 16, 2014

Japanese researchers have successfully developed the world's first imaging method for visualising the behaviour of nicotine-adenine dinucleotide derivative (NAD(P)H), a key coenzyme, inside cells. This feat ...

User comments : 0

More news stories

Finnish inventor rethinks design of the axe

(Phys.org) —Finnish inventor Heikki Kärnä is the man behind the Vipukirves Leveraxe, which is a precision tool for splitting firewood. He designed the tool to make the job easier and more efficient, with ...

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.