Painting by numbers

June 11, 2013
The common fruit fly(Drosophila melanogaster). Credit: Fotolia, Roblan

Individuals of a particular species generally differ from one another. We are clearly most adept at recognizing members of our own species, although dog and cat owners will be ready to confirm that their pets look unique. Differences within species relate to characteristics such as size and shape but also to colour: it is not only humans that show a wide range of skin pigmentation. Nevertheless, the cause of the variation in skin colour in animals has remained largely a matter for conjecture. Recent work in the group of Christian Schlötterer at the University of Veterinary Medicine, Vienna sheds light on the topic. The results are published in the online journal PLOS Genetics and point to a general method for studying variation in natural populations.

The of humans ranges from pale pinkish-white to very dark brown and relates largely to the amount of melanin produced by specialized cells in the body. The synthesis of is under the influence of a bewildering array of genes, each of which naturally occurs in a variety of different forms or , thus accounting for the wide variety of skin colours found in our species. But how precisely the variation is brought about is still unknown.

Nine genes account for pigmentation in the fruit fly

Colour also differs, albeit sometimes more subtly, in many other animals. For example, the colour of the abdomen in the fruit fly Drosophila melanogaster varies substantially. Because flies are much more amenable to genetic study than humans, we know a good deal about pigmentation in this species. At least nine genes are directly involved in the synthesis of pigment, together with a number of others that indirectly affect the pattern of pigmentation. Nevertheless, it is not clear whether changes in these genes account for the variation in the pigmentation of of flies or whether differences in other genes might somehow be responsible.

DNA sequence comparison elucidates genetic variation

The issue has been tackled by Héloïse Bastide and Andrea Betancourt at the Institute of Population Genetics of the University of Veterinary Medicine, Vienna (Vetmeduni Vienna). The researchers examined 8,000 female flies, split into 5 groups, and chose 100 of the lightest and 100 of the darkest from each group for genetic comparison. Each group of light and dark flies was pooled and its DNA sequenced, resulting in a catalogue of the genetic differences between light and dark flies at over three million positions in the fly genome. Sophisticated statistical methods were used to compare the differences between the two groups, leading to the discovery of 17 sites where variation, so-called single-nucleotide polymorphisms or SNPs (pronounced "snips"), seemed to be associated with the extent of female abdominal pigmentation.

Effective method to study natural variation

Gratifyingly, the SNPs were found to lie in or close to genes known to be involved in pigment synthesis, in particular the tan and bric-à-brac1 genes. Most of the SNPs were not in the coding sequence of these genes but instead in nearby sequences that had previously been shown to regulate their activity. In other words, the variation in the colour of female flies is not a result of changes to the genes that produce pigments but stems instead from subtle alterations in the regulation of the pigmentation genes. Bastide and Betancourt are naturally excited by their findings. As they say, "Our work has taught us a lot about how pigment production can be controlled and at least some of our conclusions may apply to other species as well. But even more importantly, our experiments show that pooling and sequencing samples can represent an effective and low-cost method to examine the basis of natural variation in populations."

Explore further: Color differences within and between species have common genetic origin

More information: Bastide, H. et al. A Genome-Wide, Fine-Scale Map of Natural Pigmentation Variation in Drosophila melanogaster, PLoS Genetics. www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1003534

Related Stories

New genes involved in human eye color identified

May 6, 2010

Three new genetic loci have been identified with involvement in subtle and quantitative variation of human eye colour. The study, led by Manfred Kayser of the Erasmus University Medical Center Rotterdam, The Netherlands, ...

Whole-genome sequence of the fruit fly Drosophila mauritiana

December 17, 2012

In the twentieth century the sequencing of an entire genome of a higher (eukaryotic) organism was a truly exceptional event – by the end of the year 2000, only four such sequences were available. Since then, technological ...

Flies with personality

April 8, 2013

(Phys.org) —Fruit flies may have more individuality and personality than we imagine.

A surprising new function for small RNAs in evolution

April 19, 2013

An international research team in including Christian Schlötterer and Alistair McGregor of the Vetmeduni Vienna has discovered a completely new mechanism by which evolution can change the appearance of an organism. The ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

4 million years at Africa's salad bar

August 3, 2015

As grasses grew more common in Africa, most major mammal groups tried grazing on them at times during the past 4 million years, but some of the animals went extinct or switched back to browsing on trees and shrubs, according ...

A look at living cells down to individual molecules

August 3, 2015

EPFL scientists have been able to produce footage of the evolution of living cells at a nanoscale resolution by combining atomic force microscopy and an a super resolution optical imaging system that follows molecules that ...

New lizard named after Sir David Attenborough

August 3, 2015

A research team led by Dr Martin Whiting from the Department of Biological Sciences recently discovered a beautifully coloured new species of flat lizard, which they have named Platysaurus attenboroughi, after Sir David Attenborough.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.