OLED brings out the shine

Jun 07, 2013
Microdisplays are barely larger than the human eye. A new, cost-effective process now lets them shine markedly brighter. Credit: Fraunhofer COMEDD

Screens made of organic light diodes promise unfathomable possibilities. Yet high production costs often prevent their widespread use. A new kind of production saves not only costs, but also improves the radiance of the OLED.

The age of the good old has long since passed. According to the German Federal Statistics Office, by 2011, almost every other German household had a . The question, however, is how long our boob tubes – measuring just a few centimeters thick – will manage to hold onto the moniker "flat." Rigo Herold of the Fraunhofer for Organics, Materials and COMEDD is already thinking in totally different dimensions in any case: "In 2008, the first manufacturers introduced displays that were less than a millimeter thick." The technology behind these incredibly narrow matt screens is called . The abbreviation stands for "Organic Light Emitting Diode." "OLEDs emit light themselves, and unlike the ordinary liquid crystal display screens of today, they work without background lighting. For this reason, it will soon be possible to manufacture very thin and simultaneously very flexible, bendable displays," explains Herold, who is in charge of "IC and Systems Design" at COMEDD. What you previously knew only from science fiction flicks could also change our everyday viewing experience within the foreseeable future: Screens as thin as paper, applied to clothing, curtains and even windows.

Yet the technology is still in its infancy stages. Beside the minimal lifespan, up to now the extremely high acquisition costs are impeding a widespread breakthrough. "Producing organic light diodes is still very expensive. This is why you still cannot purchase large-scale OLED television screens currently. Right now, the technology is being used primarily for very small screen sizes of just a few square centimeters. Examples include the on digital cameras or – even smaller – on cellphone beamers and data glasses," as Herold describes the state of the art. Together with his colleagues, he is researching new production methods for microdisplays.

Subpixels applied directly onto microdisplays

The researchers recently achieved an important breakthrough in this area: Together with VON ARDENNE Anlagentechnik GmbH they are developing a technology for producing mini-OLED screens without color filters. That makes the production process not only cheaper, but even improves the luminosity of the microdisplays. Until now, the color filter suppressed the self-radiance of the OLED, so that only about 20 percent of the emitted light could be used. Two negative effects from the filter sheet being used are responsible for this: First, it suppresses two of the three color ranges of an OLED subpixel; second, as an additional layer applied over the OLED, it automatically dims the generated light.

In order to circumvent the use of the color filter, the red, green and blue subpixels – which are integral to the depiction of a color image – must be loaded onto the OLED directly. That was previously impossible. "The subpixels in the tiny display are typically about 8 square micrometers in size. However, conventional technology only allowed for the processing of units greater than 50 square micrometers," says Herold, illustrating the challenge to be mastered. In order to resolve this set of problems, scientists employed a special technology made by VON ARDENNE, their partner company. This technology facilitates the targeted vaporization of organic layers locally, under heat. In this manner, surfaces can be processed that are smaller than 10 square micrometers. "In order to use the technology for OLED microdisplays, we redesigned the entire manufacturing process. It is therefore possible to load the red, green and blue color pixels directly. The use of the color filter is no longer necessary and it is possible to use 100 percent of the light emitted," says Herold.

Smartphones hold up longer

Still, the OLED not only shine brighter, the new production process is also less expensive. Color filters are very expensive to produce. Depending on the application, they have to be custom-designed, consist of suitable materials and be mounted properly. If the filter shifts, for instance, that could have a negative impact on the image quality. "Ultimately, the consumer benefits as well: We all know that our mobile devices, like smartphones and digital cameras, consume a lot of energy each day. The less is used for the color presentation of the displays, the longer our batteries will last for telephone calls, surfing or taking pictures," Herold concludes.

Explore further: Bringing cheaper, 'greener' lighting to market with inkjet-printed hybrid quantum dot LEDs

Related Stories

Building a better light bulb

Feb 01, 2012

Scientists study the movement of charge carriers to design an organic LED that is energy efficient and still casts a warm, natural glow.

55": LG announces world's largest OLED TV panel

Dec 27, 2011

LG Display announced that it has developed the world's largest 55-inch OLED (Organic Light Emitting Diodes) TV panel. The 55-inch panel is a significant step forward in the popularization of OLED TVs and demonstrates ...

Recommended for you

Lifting the brakes on fuel efficiency

Apr 18, 2014

The work of a research leader at Michigan Technological University is attracting attention from Michigan's Governor as well as automotive companies around the world. Xiaodi "Scott" Huang of Michigan Tech's ...

Large streams of data warn cars, banks and oil drillers

Apr 16, 2014

Better warning systems that alert motorists to a collision, make banks aware of the risk of losses on bad customers, and tell oil companies about potential problems with new drilling. This is the aim of AMIDST, the EU project ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Jun 07, 2013
5 times brighter? That should translate into much longer lifespan.

More news stories

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.

Health care site flagged in Heartbleed review

People with accounts on the enrollment website for President Barack Obama's signature health care law are being told to change their passwords following an administration-wide review of the government's vulnerability to the ...

Impact glass stores biodata for millions of years

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...