Nanomechanical resonator self-assembled from nanoparticles

June 12, 2013
Phase-sensitive image of one mode of membrane motion under mechanical excitation.

The self-assembly of nanoscale structures from functional nanoparticles has provided a powerful path to developing devices with emergent properties from the bottom up. Users from the University of Chicago, together with researchers from the University of Melbourne and CNM's Electronic & Magnetic Materials & Devices Group, demonstrate that free-standing sheets self-assembled from various nanoparticles form versatile nanomechanical resonators in the MHz frequency range.

Using spatially resolved laser interferometry to measure thermal vibrational spectra and image vibration modes, the research team shows that the resonator's dynamic behavior is in excellent agreement with linear elastic response for prestressed drumheads of negligible bending stiffness.

Power spectral distribution of the thermal motion of membranes self-assembled from gold nanoparticles taken at the center (black) and halfway along the radius (red) in air; inset shows TEM images of the membranes.

Fabricated in a simple one-step drying-mediated process, these resonators are highly robust, and their inorganic-organic hybrid nature offers extremely low mass, low stiffness, and the potential to couple the intrinsic functionality of the nanoparticle building blocks to nanomechanical motion.

Explore further: Exotic behavior when mechanical devices reach the nanoscale

More information: Kanjanaboos, P. et al., Self-Assembled Nanoparticle Drumhead Resonators, Nano Lett. 13, 2158 (2013).

Related Stories

Exotic behavior when mechanical devices reach the nanoscale

May 15, 2011

Most mechanical resonators damp (slow down) in a well-understood linear manner, but ground-breaking work by Prof. Adrian Bachtold and his research group at the Catalan Institute of Nanotechnology has shown that resonators ...

Sensors for the real world

November 5, 2012

Over the last decade there has been an increased interest in developing resonators for gravitmetric sensing; however, the sensors' response to variations in temperature has prevented them from being used outside the laboratory. ...

Visualization of gold nanoparticle self-assembly via TEM

March 13, 2013

The self-assembly of gold nanoparticles (Au NPs) coated with specific organic ions in water was observed by Center for Nanoscale Materials staff in the Nanobio Interfaces, Electronic & Magnetic Materials & Devices, and Nanophotonics ...

Diamond as a building material for optical circuits

April 11, 2013

The application of light for information processing opens up a multitude of possibilities. However, to be able to adequately use photons in circuits and sensors, materials need to have particular optical and mechanical properties. ...

Recommended for you

Electrical circuit made of gel can repair itself

August 25, 2015

(Phys.org)—Scientists have fabricated a flexible electrical circuit that, when cut into two pieces, can repair itself and fully restore its original conductivity. The circuit is made of a new gel that possesses a combination ...

Scientists grow high-quality graphene from tea tree extract

August 21, 2015

(Phys.org)—Graphene has been grown from materials as diverse as plastic, cockroaches, Girl Scout cookies, and dog feces, and can theoretically be grown from any carbon source. However, scientists are still looking for a ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.