Nanomechanical resonator self-assembled from nanoparticles

Jun 12, 2013
Phase-sensitive image of one mode of membrane motion under mechanical excitation.

The self-assembly of nanoscale structures from functional nanoparticles has provided a powerful path to developing devices with emergent properties from the bottom up. Users from the University of Chicago, together with researchers from the University of Melbourne and CNM's Electronic & Magnetic Materials & Devices Group, demonstrate that free-standing sheets self-assembled from various nanoparticles form versatile nanomechanical resonators in the MHz frequency range.

Using spatially resolved laser interferometry to measure thermal vibrational spectra and image vibration modes, the research team shows that the resonator's dynamic behavior is in excellent agreement with linear elastic response for prestressed drumheads of negligible bending stiffness.

Power spectral distribution of the thermal motion of membranes self-assembled from gold nanoparticles taken at the center (black) and halfway along the radius (red) in air; inset shows TEM images of the membranes.

Fabricated in a simple one-step drying-mediated process, these resonators are highly robust, and their inorganic-organic hybrid nature offers extremely low mass, low stiffness, and the potential to couple the intrinsic functionality of the nanoparticle building blocks to nanomechanical motion.

Explore further: A nanosized hydrogen generator

More information: Kanjanaboos, P. et al., Self-Assembled Nanoparticle Drumhead Resonators, Nano Lett. 13, 2158 (2013).

add to favorites email to friend print save as pdf

Related Stories

Diamond as a building material for optical circuits

Apr 11, 2013

The application of light for information processing opens up a multitude of possibilities. However, to be able to adequately use photons in circuits and sensors, materials need to have particular optical ...

Sensors for the real world

Nov 05, 2012

Over the last decade there has been an increased interest in developing resonators for gravitmetric sensing; however, the sensors' response to variations in temperature has prevented them from being used outside the laboratory. ...

Exotic behavior when mechanical devices reach the nanoscale

May 15, 2011

Most mechanical resonators damp (slow down) in a well-understood linear manner, but ground-breaking work by Prof. Adrian Bachtold and his research group at the Catalan Institute of Nanotechnology has shown that resonators ...

Recommended for you

A nanosized hydrogen generator

Sep 20, 2014

(Phys.org) —Researchers at the US Department of Energy's (DOE) Argonne National Laboratory have created a small scale "hydrogen generator" that uses light and a two-dimensional graphene platform to boost ...

For electronics beyond silicon, a new contender emerges

Sep 16, 2014

Silicon has few serious competitors as the material of choice in the electronics industry. Yet transistors, the switchable valves that control the flow of electrons in a circuit, cannot simply keep shrinking ...

Making quantum dots glow brighter

Sep 16, 2014

Researchers from the University of Alabama in Huntsville and the University of Oklahoma have found a new way to control the properties of quantum dots, those tiny chunks of semiconductor material that glow ...

The future face of molecular electronics

Sep 16, 2014

The emerging field of molecular electronics could take our definition of portable to the next level, enabling the construction of tiny circuits from molecular components. In these highly efficient devices, ...

User comments : 0