In the mood for music

Jun 27, 2013

Could a computer distinguish between the moods of a mournful classical movement or an angst-ridden emo rock song? Research to be published in the International Journal of Computational Intelligence Studies, suggests that it should be possible to categorise music accurately without human listeners having to listen in.

An experimental algorithm developed by researchers in Poland could help the record industry automate playlist generation based on listener choices as well as allow users themselves to better organise their music collections.

Multimedia experts Bozena Kostek and Magdalena Plewa of Gdansk University of Technology, point out that so-called "meta data" associated with a music file becomes redundant in a large collection where lots of pieces of music will share basic information such as composer, performer, copyright details and perhaps genre tags. As such, conventional management of music content of the kind used by web sites that stream and suggest music as well as the software used on computers and portable music players is often ineffective. Handling vast , which might contain hundreds, if not tens of thousands of song excerpts with overlapping meta data is increasingly difficult, especially in terms of allowing streaming sites and users to select songs across genres that share particular moods.

Of course, music appreciate is highly subjective as is appreciation of any art form. "Musical expressivity can be described by properties such as meter, rhythm, tonality, harmony, melody and form," the team explains. These allow a technical definition of a given piece. "On the other hand, music can also be depicted by evaluative characteristics such as , perception of preference, mood or emotions," they add. "Mood, as one of the pre-eminent functions of music should be an important means for music classification," the team says.

Previous mood classification systems have used words, such as rousing, passionate, fun, brooding, wistful in clusters to help categorise a given piece. There are dozens of words to describe a piece of music and that each might be associated with various emotions. The team has turned to a database of mp3 files containing more than 52,000 pieces of music to help them develop a statistical analysis that can automatically correlate different adjectives and their associated emotions with the specific pieces of in the database.

Fundamentally, the algorithm carries out an analysis of the audio spectrum of samples from each track and is "taught" by human users, which spectral patterns are associated with given moods. It can thus automatically classify future sound files with which it is presented across a range of musical genres: alternative rock, classical, jazz, opera and rock. Artists including Coldplay, Maroon 5, Linda Eder, Imogen Heap, Paco De Lucia, Nina Sky, Dave Brubek and many others were analysed, the team says.

Explore further: Vatican's manuscripts digital archive now available online

More information: Kostek, B. and Plewa, M. Parametrisation and correlation analysis applied to music mood classification, International Journal of Computational Intelligence Studies, 2013, 2, 4-25.

add to favorites email to friend print save as pdf

Related Stories

Mood player creates the right atmosphere

Mar 03, 2009

(PhysOrg.com) -- Melancholic songs, dance rhythms or romantic background music? The mood player can recognize musical characteristics and sort songs according to moods. It also blends in suitable images to the rhythm of the ...

Recommended for you

Kickstarter suspends privacy router campaign

Oct 20, 2014

Kickstarter has suspended an anonymizing router from its crowdfunding site. By Sunday, the page for "anonabox: A Tor hardware router" carried an extra word "(Suspended)" in parentheses with a banner below ...

User comments : 0