New low-cost, transparent electrodes

Jun 27, 2013

Indium tin oxide (ITO) has become a standard material in light-emitting diodes, flat panel plasma displays, electronic ink and other applications because of its high performance, moisture resistance, and capacity for being finely etched. But indium is also rare and expensive, and it requires a costly deposition process to make opto-electronic devices and makes for a brittle electrode. Replacing indium as the default material in transparent electrodes is a high priority for the electronics industry.

Now, in a paper appearing in APL Materials, a new open-access journal produced by AIP Publishing, researchers report creating a sturdy, transparent, and indium-free electrode from silver (Ag) and (TiO2) that could replace indium-based electrodes in some applications.

"Silver and titanium are much more abundant than indium in the earth's crust, and so we anticipate that electronic devices based on silver and titanium dioxide would be a more sustainable materials system and be manufactured at a low cost," said T.L. Alford, a professor of Materials Science and Engineering at Arizona State University who led the research.

The TiO2/Ag/TiO2 composite electrode multilayer film the researchers studied has been well characterized in the literature, but the team optimized both the thickness of the silver layer and the manufacturing process so that the multilayer film has a low sheet resistance and high optical transmittance, both properties necessary for high-performance.

The researchers created films with a sheet resistance as low as one sixth of that achieved by previous studies, while maintaining approximately 90 percent optical transmittance. With the choice of an underlying substrate made of polyethylene napthalate (PEN)—a sturdy polymer used in a variety of applications from bottling carbonated beverages to manufacturing flexible electronics—the researchers added additional durability.

Because of a less expensive manufacturing process and the wide availability of titanium dioxide, silver and PEN, the new TiO2/Ag/TiO2 thin film could one day help make devices such as electronic displays and solar cells more affordable by replacing more expensive indium-based .

Explore further: Demystifying nanocrystal solar cells

More information: dx.doi.org/10.1063/1.4808438

Related Stories

Recommended for you

Demystifying nanocrystal solar cells

Jan 28, 2015

ETH researchers have developed a comprehensive model to explain how electrons flow inside new types of solar cells made of tiny crystals. The model allows for a better understanding of such cells and may ...

Researchers use oxides to flip graphene conductivity

Jan 26, 2015

Graphene, a one-atom thick lattice of carbon atoms, is often touted as a revolutionary material that will take the place of silicon at the heart of electronics. The unmatched speed at which it can move electrons, ...

Researchers make magnetic graphene

Jan 26, 2015

Graphene, a one-atom thick sheet of carbon atoms arranged in a hexagonal lattice, has many desirable properties. Magnetism alas is not one of them. Magnetism can be induced in graphene by doping it with magnetic ...

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.