Low-cost molecule boosts stability and amplification characteristics of solution-based polymer semiconductors

Jun 19, 2013
Organic electronics: A faster way to move electrons
Research at the A*STAR Institute of Materials Research and Engineering is reducing the barriers hindering the development of electronic circuits made from flexible polymers. Credit: iStockphoto/Thinkstock

Replacing traditional rigid silicon wafers with semiconductors made from flexible polymers would herald an age of advanced, 'wearable' electronics. Switching to these semiconductors, known as organic field-effect transistors (OFETs), would also reduce manufacturing costs significantly. However, most plastic materials have trouble moving electrons and their polar opposites—positively charged empty 'holes' inside semiconductor lattices—with sufficient speed for electronic amplification.

Prashant Sonar and co-workers from the A*STAR Institute of Materials Research and Engineering in Singapore have now developed a polymer for solution-based OFET processing that has inherently high and extraordinary air stability. Unlike silicon, polymers are difficult to pack into crystalline structures containing regular pathways for . The team's polymer, however, has specifically designed hydrogen bond interactions that create ordered networks for transporting electrons and holes.

Most polymers used in OFETs have a 'donor–acceptor' arrangement of conjugated molecules to enhance the mobility of charge carriers. Using special catalysts, chemists can link together small units of electron-rich and electron-poor to form an alternating chain of 'block' co-polymers. Sonar and co-workers investigated whether fluorenone—an inexpensive and chemically stable molecule with three fused and a central carbonyl unit—could act as a new type of acceptor block for OFET polymers.

The researchers anticipated that the unusual polarity of fluorenone's carbonyl unit might help it stick to aromatic and improve solid-state packing. To test this concept, they made a co-polymer consisting of fluorenone and an aromatic donor known as diketopyrrolopyrrole (DPP), a compound designed to be compatible with large-scale solution processing. The resulting block co-polymer had exceptional thermal stability: it melted only at external temperatures over 300 °C.

When Sonar and co-workers used a technique called spin-coating to convert the fluorenone–DPP co-polymer into an OFET device, they observed impressive amplification characteristics and one of the highest hole mobilities ever recorded for solution-processed transistors. Their tests also showed that this material retained its valuable electronic attributes without decomposing in air—a problem that plagued earlier generations of OFETs. Optical measurements revealed the basis of this high stability: the fluorenone units make electrons in the co-polymer's highest energy states less accessible and therefore less susceptible to air-based impurities.

"Fluorenone is a commercially available, cheap starting material, which has never been studied for OFET use before," says Sonar. The team is now investigating how to utilize it as a novel building block for high-performance organic electronic applications by carefully 'engineering' chemical improvements onto its molecular framework.

Explore further: World's fastest manufacture of battery electrodes

More information: Sonar, P., Ha, T.-J. & Dodabalapur, A. A fluorenone based low band gap solution processable copolymer for air stable and high mobility organic field effect transistors. Chemical Communications 49, 1588–1590 (2013). pubs.rsc.org/en/content/articl… g/2013/cc/c2cc37131f

add to favorites email to friend print save as pdf

Related Stories

Accidental discovery may lead to improved polymers

Apr 05, 2013

Chemical Engineering Professor Tim Bender and Post-Doctoral Fellow Benoit Lessard's discovery of an unexpected side product of polymer synthesis could have implications for the manufacture of commercial polymers used in sealants, ...

Organic polymers show sunny potential

May 29, 2013

(Phys.org) —A new version of solar cells created by laboratories at Rice and Pennsylvania State universities could open the door to research on a new class of solar energy devices.

Recommended for you

World's fastest manufacture of battery electrodes

1 hour ago

New world record: Scientists at the Karlsruhe Institute of Technology (KIT) increased the manufacturing speed of electrode foils coated batch-wise by a factor of three – to 100 meters per minute. This was ...

Waste, an alternative source of energy to petroleum

1 hour ago

The group led by Martín Olazar, researcher in the UPV/EHU-University of the Basque Country's Department of Chemical Engineering, is studying the development of sustainable refineries where it is possible ...

Researchers developing new thermal interface materials

2 hours ago

In the microelectronics world, the military and private sectors alike need solutions to technologic challenges. Dr. Mustafa Akbulut, assistant professor of chemical engineering, and two students lead a project ...

New insights on carbonic acid in water

17 hours ago

Though it garners few public headlines, carbonic acid, the hydrated form of carbon dioxide, is critical to both the health of the atmosphere and the human body. However, because it exists for only a fraction ...

User comments : 0