Creating life-saving drugs from deadly venom

Jun 21, 2013
Creating life-saving drugs from deadly venom
Credit: Shutterstock

When faced with a scorpion, poisonous snake, jellyfish or tarantula, most people would beat a hasty retreat. For a team of scientists investigating the therapeutic potential of their venom, these are however very treasured creatures.

The VENOMICS ('High-throughput peptidomics and transcriptomics of animal venoms for discovery of novel therapeutic and innovative drug development') project is extracting their venom, examining its ingredients and testing how each individual molecule could be used by doctors.

There are more than 100,000 species of , and each venom type is a complex cocktail of up to 1,000 - most of them mini-proteins called peptides. So far, 2,000 venom proteins have been identified, while the VENOMICS project will study 10,000 new ones.

Venoms frequently contain , which target the nervous system of prey. Cardiotoxins affect , while hemotoxins target and circulation. But while they can be fatal, take these toxins individually and at a more modest dose and they could help treat heart disease, pain, cancer, diabetes and other conditions, according to the VENOMICS team, and potentially save lives.

What makes this project particularly innovative is its ability to deal with large numbers of mini-proteins. The traditional approach has been to test venom extracts to see if they are able to impact upon a . Those venoms identified as 'interesting' at this stage are then broken down into its components. Each component is then tested again for impact before being broken down further. Eventually, the single molecule responsible for bioactivity is identified and purified, and its structure determined. While effective, this workflow is slow and cannot b used for a large-scale investigation of venoms.

The VENOMICS researchers are starting by using DNA sequencing to build up a bank of 10,000 mini-proteins that can then be reproduced using bacteria. The molecules will then be purified and their activity studied in vitro. It will then be possible to see in which conditions a molecule becomes active. So the team will be working on a multitude of mini-proteins at the same time, rather than one at a time, which speeds up the process.

While this is the first time this field has been studied in depth, we already know that it is possible to turn a venom toxin into a drug. Captopril, a molecule derived from the venom of a Brazilian pit viper, is used to treat hypertension and generates annual sales of at least USD 1 billion. Two other drugs created from snake venom are used to treat heart attacks, while the venom of a cone snail can be used to relieve persistent pain. One of the most recent venom-derived drugs to reach the market - manufactured using the saliva of the Gila monster lizard - is now being used to treat type II diabetes.

If successful, the project may lead to a host of new drug candidates, enable the VENOMICS team to carry out in-house drug development and generate licensing opportunities for pharmaceutical companies.

The project is being led by France-based VenomeTech, a small company specialised in -based drug discovery. It is joined by other small and medium-sized enterprises (SMEs) and universities from France, Belgium, Denmark, Spain and Portugal. The project partners have received just under EUR 6 million in funding under the Health strand of the EU's Seventh Framework Programme (FP7).

Explore further: Pterostilbene, a molecule similar to resveratrol, as a potential treatment for obesity

More information: VENOMICS : www.venomics.eu/
Project factsheet cordis.europa.eu/projects/rcn/101790_en.html

add to favorites email to friend print save as pdf

Related Stories

Biting back: Snake venom contains toxic clotting factors

Feb 27, 2013

The powerful venom of the saw-scaled viper Echis carinatus contains both anticoagulants and coagulants finds a study published in the launch edition of BioMed Central's open access journal Journal of Venomous Animals and Toxin ...

Mamba venom holds promise for pain relief

Oct 03, 2012

Scientists have used the venom of Africa's lethal black mamba to produce a surprising outcome in mice which they hope to replicate in humans—effective pain relief without toxic side effects.

Recommended for you

Why plants don't get sunburn

Oct 29, 2014

Plants rely on sunlight to make their food, but they also need protection from its harmful rays, just like humans do. Recently, scientists discovered a group of molecules in plants that shields them from ...

Viral switches share a shape

Oct 27, 2014

A hinge in the RNA genome of the virus that causes hepatitis C works like a switch that can be flipped to prevent it from replicating in infected cells. Scientists have discovered that this shape is shared by several other ...

'Sticky' ends start synthetic collagen growth

Oct 27, 2014

Rice University researchers have delivered a scientific one-two punch with a pair of papers that detail how synthetic collagen fibers self-assemble via their sticky ends.

Cell membranes self-assemble

Oct 27, 2014

A self-driven reaction can assemble phospholipid membranes like those that enclose cells, a team of chemists at the University of California, San Diego, reports in Angewandte Chemie.

Emergent behavior lets bubbles 'sense' environment

Oct 27, 2014

Tiny, soapy bubbles can reorganize their membranes to let material flow in and out in response to the surrounding environment, according to new work carried out in an international collaboration by biomedical ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.