Catching individual molecules in a million with optical antennas inside nano-boxes

Jun 10, 2013
This is a dimer antenna inside a nanobox for single biomolecule analysis at high concentrations. Credit: ICFO

A single cell in our body is composed of thousands of millions of different biomolecules that work together in an extremely well-coordinated way. Likewise, many biological and biochemical reactions occur only if molecules are present at very high concentrations. Understanding how all these molecules interact with each other is key to advancing our knowledge in molecular and cell biology.

This knowledge is of central and fundamental importance in the quest for the detection of the earliest stages of many human diseases. As such, one of ultimate goals in Life Sciences and Biotechnology is to observe how individual molecules work and interact with each other in these very crowded environments. Unfortunately, detecting one molecule amongst millions of neighbouring molecules has been technically impossible until now. The key to successfully detecting the single molecule lies in the conception and production of a working device that shrinks the observation region to a tiny size that is comparable to the size of the molecule itself, i.e. only a few nanometres.

Researchers at the Fresnel Institute in Marseille and ICFO-the Institute for Photonic Sciences in Barcelona report in Nature Nanotechnology the design and fabrication of the smallest , capable of detecting and sensing individual at concentrations that are similar to those found in the cellular context. The device called "antenna-in-a-box" consists on a tiny antenna made out of two gold semi-spheres, separated from each other by a gap as small as 15nm. Light sent to this antenna is enormously amplified in the gap region where the actual detection of the biomolecule of interest occurs. Because of the light is confined to the dimensions of the gap, only molecules present in this tiny region are detected. A second trick that the researchers used to make this device work was to embed the dimer antennas inside boxes also of nanometric dimensions. "The box screens out the unwanted "noise" of millions of other surrounding molecules, reducing the background and improving as a whole the detection of individual biomolecules.", explains Jerome Wenger from Fresnel Institute. When tested under different sample concentrations, this novel antenna-in-box device allowed for 1100-fold fluorescence brightness enhancement together with detection volumes down to 58 zeptoliters (1 zL = 10-21L), i.e., the smallest observation volume in the world.

The antenna-in-a-box offers a highly efficient platform for performing a multitude of nanoscale biochemical assessments with single molecule sensitivity at physiological conditions. It could be used for ultrasensitive sensing of minute amounts of , becoming an excellent early diagnosis device for biosensing of many disease markers. "It can also be used as an ultra-bright optical nanosource to illuminate molecular processes in living cells and ultimately visualize how individual biomolecules interact with each other. This brings us closer to the long awaited dream of biologists", concludes ICFO researcher Prof. Maria Garcia-Parajo.

Explore further: A promising light source for optoelectronic chips can be tuned to different frequencies

More information: D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. Garcia-Parajo, J. Wenger, "A plasmonic 'antenna-in-box' platform for enhanced single-molecule analysis at micromolar concentrations" Nature Nanotechnology DOI: 10.1038/NNANO.2013.98

add to favorites email to friend print save as pdf

Related Stories

Scientists develop advanced biological computer

May 24, 2013

(Phys.org) —Using only biomolecules (such as DNA and enzymes), scientists at the Technion-Israel Institute of Technology have developed and constructed an advanced biological transducer, a computing machine capable of manipulating ...

Carbon nanotubes for molecular magnetic resonances

Jun 09, 2013

Researchers at ICFO have developed a new technique for measuring very weak forces on a molecular scale. Thanks to the use of carbon nanotubes, they have achieved the highest level of sensitivity to date. These results published ...

Nanotech device mimics dog's nose to detect explosives

Nov 20, 2012

(Phys.org)—Portable, accurate, and highly sensitive devices that sniff out vapors from explosives and other substances could become as commonplace as smoke detectors in public places, thanks to researchers ...

Electronics of nature's nano machines

Nov 23, 2012

(Phys.org)—A team from the Cardiff University's Schools of Biosciences and Physics and Astronomy have made a breakthrough in our understanding of proteins - the workhorse molecules of the cell and nature's ...

Recommended for you

For electronics beyond silicon, a new contender emerges

20 hours ago

Silicon has few serious competitors as the material of choice in the electronics industry. Yet transistors, the switchable valves that control the flow of electrons in a circuit, cannot simply keep shrinking ...

Making quantum dots glow brighter

22 hours ago

Researchers from the University of Alabama in Huntsville and the University of Oklahoma have found a new way to control the properties of quantum dots, those tiny chunks of semiconductor material that glow ...

The future face of molecular electronics

22 hours ago

The emerging field of molecular electronics could take our definition of portable to the next level, enabling the construction of tiny circuits from molecular components. In these highly efficient devices, ...

Study sheds new light on why batteries go bad

Sep 14, 2014

A comprehensive look at how tiny particles in a lithium ion battery electrode behave shows that rapid-charging the battery and using it to do high-power, rapidly draining work may not be as damaging as researchers ...

Moving silicon atoms in graphene with atomic precision

Sep 12, 2014

Richard Feynman famously posed the question in 1959: is it possible to see and manipulate individual atoms in materials? For a time his vision seemed more science fiction than science, but starting with groundbreaking ...

User comments : 0