All systems go: A new high-energy record for LCLS

Jun 27, 2013 by Glenn Roberts Jr.
The linear accelerator tunnel at SLAC includes tubing that carries electron bunches traveling at nearly the speed of light. Last month, accelerator staff helped to set a high-energy record at the Linac Coherent Light Source X-ray laser by operating power systems at near-peak levels for almost 24 hours. Credit: SLAC Multimedia Communications

(Phys.org) —John Hill watched with eager anticipation as controllers ramped up the power systems driving SLAC's X-ray laser in an attempt to achieve the record high energies needed to make his experiment a runaway success.

The Brookhaven National Laboratory scientist was the leader of a research team that had come from Illinois, Germany, Switzerland and England to use the Linac Coherent Light Source (LCLS), and this was their last day. They would get only one shot.

Gathered in SLAC's Main Control Center with LCLS staff members, the team watched as blips of green appeared in a long sequence across a screen. Each represented a klystron working at full power to accelerate a beam of electrons, which would be converted to LCLS X-ray pulses. To reach the high X-ray energies they were aiming for, all of the 80 klystrons associated with LCLS would need to operate at near-peak levels.

In a few instances, the lights turned red. "The users asked, 'Is it over?'" recalled LCLS staff scientist Marcin Sikorski. "No. They brought the klystrons back quickly, in a matter of minutes."

With all systems go, the of the X-ray pulses soared to 11.2 kilo-electronvolts (keV) – a new record, about 35 percent higher than LCLS had originally been designed to reach – and stayed there for 24 hours nearly uninterrupted. It's a performance the LCLS staff hopes to duplicate and even exceed, to the benefit of a wide range of future experiments.

The mood in the control center was electric, Hill said: "They were high-fiving each other. 'Excitement' is definitely the best word. Everything had to be perfect for this to work."

While SLAC's linear accelerator is in an underground tunnel, the power systems that help drive it are housed in this above-ground structure. A section of the linear accelerator is used to produce electron bunches that are converted to X-ray laser pulses for use in experiments at SLAC's Linac Coherent Light Source. Credit: SLAC Multimedia Communications

There was tremendous teamwork by electricians and other staff across the Accelerator Directorate, Sikorski said, "with huge doses of luck."

The record-high energy level was key for Hill's experiment, said David Fritz, acting director for the LCLS Science, Research and Development Division, as it tapped a powerful resonance – like the loud plucking of a violin string – in iridium, a chemical component of the sample under study.

When strongly enhanced by high-energy X-rays, as it was that day, this resonance "gives you sensitivity to particular electronic states in atoms," Fritz said, which in this sample "happens to be very important for magnetic properties." Without this high energy, the experiment had detected only a faint signal and generated a limited amount of data.

After hitting the energy record, the detector was suddenly measuring an "enormous amount of X-rays" about 150 times more intense than before, Hill said, producing a very clear and distinct signal.

"What had been a few dots on the detector became a bright cluster of intensity," Hill said. "We got 24 hours of data in this wonderful condition." After the successful test, Hill is already talking about plans for follow-up experiments at LCLS, including experiments that add other laser pulses to study how processes evolve over time.

Axel Brachmann, LCLS Accelerator Systems Division director, said the accelerator was performing so optimally during the experiment that the staff pushed the machine to an even higher energy after it had concluded.

"We explored how far we could go. We ran up to 11.9 keV," he said, adding that the energy might even be notched a bit higher in a future testing mode: "With more tuning we could probably bring it up."

The accelerator staff had pushed the other end of the LCLS energy range just last year, successfully dialing back the minimum energy of LCLS X-ray pulses to about one-third the minimum energy it was originally designed to run at, which opened up a new realm of possible experiments.

Hill said he was impressed with all the work that went into boosting the results of his team's experiment.

"Pulling this out of their hat on the last day, it was fantastic," he said.

Explore further: SLAC's X-ray laser explores big data frontier

Related Stories

X-ray laser pulses in two colors

Mar 27, 2013

(Phys.org) —SLAC researchers have demonstrated for the first time how to produce pairs of X-ray laser pulses in slightly different wavelengths, or colors, with finely adjustable intervals between them – ...

SLAC's X-ray laser explores big data frontier

Jun 14, 2013

(Phys.org) —It's no surprise that the data systems for SLAC's Linac Coherent Light Source X-ray laser have drawn heavily on the expertise of the particle physics community, where collecting and analyzing ...

New X-ray tool proves timing is everything

Feb 20, 2013

(Phys.org)—With SLAC's Linac Coherent Light Source X-ray laser, timing is everything. Its pulses are designed to explore atomic-scale processes that are measured in femtoseconds, or quadrillionths of a ...

An impressive and growing array of lasers at SLAC

Feb 28, 2013

In less than a decade, SLAC has built up an impressive array of dozens of laser systems – and a team of laser scientists and engineers – with capabilities that make it one of the most cutting-edge national ...

X-rays capture electron 'dance'

Jan 31, 2013

(Phys.org)—The way electrons move within and between molecules, transferring energy as they go, plays an important role in many chemical and biological processes, such as the conversion of sunlight to energy ...

Recommended for you

Could 'Jedi Putter' be the force golfers need?

3 hours ago

Putting is arguably the most important skill in golf; in fact, it's been described as a game within a game. Now a team of Rice engineering students has devised a training putter that offers golfers audio, ...

Better thermal-imaging lens from waste sulfur

18 hours ago

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

maxb500_live_nl
1 / 5 (1) Jun 28, 2013
Interesting. Now i can`t wait till the giant XFEL gets online and we will really get a quantum leap in this research field. The potential technological and economic advancements from this type of research are truly extreme to say the least.

More news stories

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Could 'Jedi Putter' be the force golfers need?

Putting is arguably the most important skill in golf; in fact, it's been described as a game within a game. Now a team of Rice engineering students has devised a training putter that offers golfers audio, ...

Continents may be a key feature of Super-Earths

Huge Earth-like planets that have both continents and oceans may be better at harboring extraterrestrial life than those that are water-only worlds. A new study gives hope for the possibility that many super-Earth ...

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...