At the heart of the circadian clock

Jun 11, 2013
At the heart of the circadian clock
Credit: Ana Blazic Pavlovic / fotolia.com

(Phys.org) —Cellular processes in most organisms are regulated by an internal clock, and proteins called cryptochromes are at the core of its central oscillator. The three dimensional structures of cryptochromes from mouse and fruitfly have now been determined.

Many biological processes, from gene expression programs to the secretion of hormones and the operation of the immune system, proceed in rhythmic patterns that are determined by a , a central oscillator that is coupled to the circadian light-dark cycle. Proteins called cryptochromes are a crucial component of the clock mechanism. In mammals, cryptochromes are critically involved in the control of diurnally regulated – including . Unlike its counterparts in mammals, the sole in the fruitfly Drosophila is sensitive to blue light and helps to synchronize the internal oscillator with the daily photoperiod.

Researchers have long sought to determine the of the two mammalian cryptochromes (mCRY1/2) and the sole cryptochrome in Drosophila (dCRY). "Only high-resolution structures can provide the information we need to work out in detail how mCRY regulates the and understand the precise mode of action of dCRY," says Privatdozent Dr. Eva Wolf of LMU's Adolf Butenandt Institute, who led the team that has successfully used X-ray crystallography to define the structures of the fruitfly cryptochrome and mammalian cryptochrome 1.

CRYs set the clock's period

The structures provide fundamentally new insights into the that control the clock period set by the central oscillator. For example, it emerges that synchronization of the Drosophila clock by blue light is mediated by a previously unknown phototransduction mechanism that results in light-induced changes in the spatial conformation of dCRY.

"The structural analysis of mCRY1 has revealed how this cryptochrome interacts with other components of the biological clock. These interactions regulate the stability of mCRY1 – and this determines the oscillation period of the clock," says Wolf. Other regions of mCRY1 bind to a transcription factor and prevent it from activating genes involved in a range of periodic physiological processes and behaviors, ensuring that these are triggered and repressed with a circadian rhythm.

Keeping time keeps one healthy

The control of physiology by the biological clock also has implications for health. Thus persons whose lifestyles conflict with their inner timekeeper not only suffer from sleep disturbances, but are at increased risk for more serious disorders. "Shiftworkers are more likely to get cancer or develop metabolic syndrome," says Wolf. For instance, mCRYs play a role in the regulation of glucose levels – and perturbance of this control circuit can lead to metabolic disorders including Type-2 diabetes. "Our findings may open up new ways of treating these conditions by facilitating the design of drugs that target cryptochrome function," Wolf concludes.

Explore further: The malaria pathogen's cellular skeleton under a super-microscope

More information: Cell 2013: www.cell.com/abstract/S0092-8674(13)00576-X

add to favorites email to friend print save as pdf

Related Stories

Researchers identify structure of circadian clock protein

Nov 15, 2011

(PhysOrg.com) -- Feeling jet-lagged? You may need your internal clock reset. New Cornell research has taken a major step toward treating jet lag and other more serious syndromes by advancing our understanding ...

A mammalian clock protein responds directly to light

Jul 01, 2008

We all know that light effects the growth and development of plants, but what effect does light have on humans and animals? A new paper by Nathalie Hoang et al., published in PLoS Biology this week, explores this question by exa ...

Recommended for you

For resetting circadian rhythms, neural cooperation is key

9 hours ago

Fruit flies are pretty predictable when it comes to scheduling their days, with peaks of activity at dawn and dusk and rest times in between. Now, researchers reporting in the Cell Press journal Cell Reports on April 17th h ...

Rapid and accurate mRNA detection in plant tissues

10 hours ago

Gene expression is the process whereby the genetic information of DNA is used to manufacture functional products, such as proteins, which have numerous different functions in living organisms. Messenger RNA (mRNA) serves ...

For cells, internal stress leads to unique shapes

Apr 16, 2014

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

User comments : 0

More news stories

Deadly human pathogen Cryptococcus fully sequenced

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...