Hairpin turn: Micro-RNA plays role in wood formation

June 10, 2013

For more than a decade, scientists have suspected that hairpin-shaped chains of micro-RNA regulate wood formation inside plant cells. Now, scientists at NC State University have found the first example and mapped out key relationships that control the process.

The research, published online in Proceedings of the National Academy of Sciences the week of June 10, describes how one strand of micro-RNA reduced by more than 20 percent the formation of lignin, which gives wood its strength. Understanding how to reduce lignin at the cellular level could lead to advances in paper and biofuels production, where and costly treatments are used to remove lignin from wood.

"This is the first time that we have proof that a micro-RNA controls lignin biosynthesis," said Dr. Vincent Chiang, who co-directs NC State's Forest Biotechnology Group with Dr. Ron Sederoff, a member of the National Academy of Sciences.

Through five years of "very detailed analysis," the team confirmed that micro-RNA acts as a master regulator in reducing formation of lignin in transgenic black cottonwood, Chiang said.

Researchers used mathematical analysis to map out a three-layered network of relationships among key and the micro-RNA that controls expression of laccase genes as well as other peroxidase genes involved in wood formation.

The network illustrates the hierarchy of gene control and narrows the transcription factors of interest from approximately 2,000 to 20. "That's still a career's worth of research," Chiang said.

Explore further: Scientists to study plant 'switchboards'

More information: "Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa" Proceedings of the National Academy of Sciences, 2013. www.pnas.org/cgi/doi/10.1073/pnas.1308936110

Abstract
Laccases, as early as 1959, were proposed to catalyze the oxidative polymerization of monolignols. Genetic evidence in support of this hypothesis has been elusive due to functional redundancy of laccase genes. An Arabidopsis double mutant demonstrated the involvement of laccases in lignin biosynthesis. We previously identified a subset of laccase genes to be targets of a microRNA (miRNA) ptr-miR397a in Populus trichocarpa. To elucidate the roles of ptr-miR397a and its targets, we characterized the laccase gene family and identified 49 laccase gene models, of which 29 were predicted to be targets of ptr-miR397a. We overexpressed Ptr MIR397a in transgenic P. trichocarpa. In each of all nine transgenic lines tested, 17 PtrLACs were down-regulated as analyzed by RNA-seq. Transgenic lines with severe reduction in the expression of these laccase genes resulted in an ~40% decrease in the total laccase activity. Overexpression of Ptr-MIR397a in these transgenic lines also reduced lignin content, whereas levels of all monolignol biosynthetic gene transcripts remained unchanged. A hierarchical genetic regulatory network (GRN) built by a bottom-up graphic Gaussian model algorithm provides additional support for a role of ptr-mi397a as a negative regulator of laccases for lignin biosynthesis. Full transcriptome-based differential gene expression in the overexpressed transgenics and protein domain analyses implicate previously unidentified transcription factors and their targets in an extended hierarchical GRN including ptr-miR397a and laccases that coregulate lignin biosynthesis in wood formation. Ptr-miR397a, laccases, and other regulatory components of this network may provide additional strategies for genetic manipulation of lignin content.

Related Stories

Scientists to study plant 'switchboards'

September 3, 2009

A new four-year, $3.72 million grant to North Carolina State University will allow researchers to shed light on an important mystery - how genes impact the type and amount of "glue," known as lignin, produced in trees. Understanding ...

Wood completely broken down into its component parts

October 24, 2012

Crude oil is getting scarce. This is why researchers are seeking to substitute petroleum-based products - like plastics - with sustainable raw materials. Waste wood, divided into lignin and cellulose, could serve as a raw ...

Recommended for you

Studies reveal details of error correction in cell division

July 29, 2015

Cell biologists led by Thomas Maresca at the University of Massachusetts Amherst, with collaborators elsewhere, report an advance in understanding the workings of an error correction mechanism that helps cells detect and ...

Researchers discover new type of mycovirus

July 29, 2015

Researchers, led by Dr Robert Coutts, Leverhulme Research Fellow from the School of Life and Medical Sciences at the University of Hertfordshire, and Dr Ioly Kotta-Loizou, Research Associate at Imperial College, have discovered ...

Stressed out plants send animal-like signals

July 29, 2015

University of Adelaide research has shown for the first time that, despite not having a nervous system, plants use signals normally associated with animals when they encounter stress.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.