Giant 3-D printed bugs shed light on insect anatomy

Jun 19, 2013
CSIRO researcher, Chad Henry with the 3D titanium bugs.

Minute insects, from the Australian National Insect Collection, have been super sized by up to forty times using a novel 3D scanning system and printed using a state of the art 3D printer.

The 3D show new potential for studying the anatomy of miniscule creatures by enabling them to physically handle the insects and study their features up close.

Scientists believe this technology will soon enable them to determine characteristics, such as gender, and examine surface characteristics which are otherwise difficult due to the minute size.

Originally created for a national art exhibition, CSIRO Science Art Fellow Eleanor Gates-Stuart, said the bugs they are working with are micro sized, some only clearly visible under the microscope.

"We combined science and art to engage the public and through the process we've discovered that 3D printing could be the way of the future for studying these creatures," she added.

To create the bug, scientists scan the insect to generate a computer aided design (CAD) file. The CAD file is then entered into the 3D printing machine.

CSIRO's Additive Manufacturing Operations Manager, Chad Henry, said that compared to conventional methods of manufacturing, 3D printing is highly efficient and environmentally friendly.

"The process is perfect for building fine scale features to capture all of the intricate details of the bugs," he said.

Giant 3-D printed bugs shed light on insect anatomy
Up close and personal with the CSIRO printed titanium bugs.

The 3D printing machine adds layer upon layer of titanium to build up each bug. Up to 12 bugs can be produced at a time and after 10 hours in the machine; the bugs emerge from the titanium powder.

This video is not supported by your browser at this time.
A weevil scanned using novel 3D scanning process. (Credit: Chuong Nguyen, CSIRO researcher)

"Giant bug production is not necessarily where we saw ourselves going, however, this project is exciting because it brings together two key areas of science - manufacturing and entomology," Chad Henry added.

CSIRO's additive manufacturing facility, Lab 22, is currently being used to manufacture a range of prototype products including , automotive, aerospace and defence parts for Australian industry.

Explore further: Fingerprints for freight items

add to favorites email to friend print save as pdf

Related Stories

Scientists use 3-D printing to track big fish

Feb 07, 2013

CSIRO scientists are using 3D printing to build a new generation of hi-tech fish tags made of titanium. The aim is to use the tags to track big fish such as marlin, tuna, swordfish, trevally and sharks for ...

Could eating insects solve world food shortage?

Mar 01, 2012

Creating tasty food items from ground-up insects could be a solution to global food shortages, according to Insects Au Gratin, an exhibition featuring 3D food printing technology.

3D printing tiny batteries

Jun 18, 2013

(Phys.org) —3D printing can now be used to print lithium-ion microbatteries the size of a grain of sand. The printed microbatteries could supply electricity to tiny devices in fields from medicine to communications, ...

Recommended for you

Greater safety and security at Europe's train stations

20 hours ago

When a suspicious individual fleas on a bus or by train, then things usually get tough for the police. This is because the security systems of the various transportation companies and security services are ...

Fingerprints for freight items

21 hours ago

Security is a top priority in air freight logistics but screening procedures can be very time consuming and costly. Fraunhofer researchers intend to boost efficiency with a new approach to digital logistics, ...

On the way to a safe and secure smart home

21 hours ago

A growing number of household operations can be managed via the Internet. Today's "Smart Home" promises efficient building management. But often the systems are not secure and can only be retrofitted at great ...

DIY glove-based tutor indicates muscle-memory potential

Aug 31, 2014

A senior editor at IEEE Spectrum worked on a DIY project that enabled his 11-year-old son to improve his touch typing by use of a vibrating glove. His son was already "pretty quick on the keyboard," said ...

User comments : 0