Genomic analysis solves the turtle mystery

Jun 28, 2013
The turtle, although unique in many ways, follows the standard ‘hourglass’ model of vertebrate embryonic development before developing its distinct features. Credit: 2013 Naoki Irie, RIKEN Center for Developmental Biology

The turtle has always been considered somewhat odd in evolutionary terms. In addition to lacking the hole in the skull—the temporal fenestra—that is characteristic of the egg-laying amniotes, the structure of its shell differs from that of other armored tetrapods such as the armadillo, and its shoulder blades are inside rather than outside the rib cage. An international research team led by Naoki Irie of the RIKEN Center for Developmental Biology has now shown through genomic analysis that turtles are most closely related to crocodiles and birds, and that their embryonic development follows the latest 'hourglass' model of vertebrate embryology1.

Evolutionary relationships have traditionally been established by comparing differences in anatomical and structural features. However, with features inconsistent with the traditional lineages, the turtle has proved difficult to place, resulting in at least three different hypotheses for its evolution.

The international team, which included researchers from BGI and the Ensembl genome database project, instead sought to establish the evolutionary position of the turtle based on its genome, which conserves information that can be traced back to its evolutionary ancestors. To do this they sequenced and analyzed the genomes of two very different —a Chinese soft-shell turtle and the —and then compared their findings with other vertebrates.

The result was clear verification that the closest evolutionary relatives of turtles are crocodiles and birds, from which they diverged about 250 million years ago. In their analysis of the turtle genome, the researchers identified a large number of but few , suggesting that turtles potentially have a sophisticated sense of smell.

The research team also investigated the activity of genes during turtle embryonic development and found that shell formation, which in turtles represents a transformation of vertebrae and ribs, was accompanied by evidence of gene activity normally associated with the formation of limbs.

Despite their unique features, however, turtles appear to follow the same basic 'hourglass' model of development as many other vertebrates. Although their early and late embryonic development stages are distinctive, in between turtle embryos go through a bottleneck, or phylotypic stage, in which a body plan typical of vertebrates is laid down. This suggests that rather than diverging into specialized animals from the outset, turtles develop in the same way as basic vertebrates and only later enter a turtle-specific developmental phase.

"We do not yet know the diversity of animals which follow this hourglass model or why they ended up with it," Irie says. "These are the questions I want to tackle next."

Explore further: Turtle genome analysis sheds light on the development and evolution of turtle-specific body plan

More information: Wang, Z., et al. The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan. Nature Genetics 45, 701–706 (2013). dx.doi.org/10.1038/ng.2615

Related Stories

Evolutionary origin of the turtle shell

May 30, 2013

Through careful study of an ancient ancestor of modern turtles, researchers now have a clearer picture of how the turtles' most unusual shell came to be. The findings, reported on May 30 in Current Biology, help t ...

Recommended for you

Invasive vines swallow up New York's natural areas

9 hours ago

(Phys.org) —When Antonio DiTommaso, a Cornell weed ecologist, first spotted pale swallow-wort in 2001, he was puzzled by it. Soon he noticed many Cornell old-field edges were overrun with the weedy vines. ...

Citizen scientists match research tool when counting sharks

Apr 23, 2014

Shark data collected by citizen scientists may be as reliable as data collected using automated tools, according to results published April 23, 2014, in the open access journal PLOS ONE by Gabriel Vianna from The University of Wes ...

Researchers detail newly discovered deer migration

Apr 23, 2014

A team of researchers including University of Wyoming scientists has documented the longest migration of mule deer ever recorded, the latest development in an initiative to understand and conserve ungulate ...

How Australia got the hump with one million feral camels

Apr 23, 2014

A new study by a University of Exeter researcher has shed light on how an estimated one million-strong population of wild camels thriving in Australia's remote outback have become reviled as pests and culled ...

User comments : 0

More news stories

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Ocean microbes display remarkable genetic diversity

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...

Cell resiliency surprises scientists

New research shows that cells are more resilient in taking care of their DNA than scientists originally thought. Even when missing critical components, cells can adapt and make copies of their DNA in an alternative ...