The fight against genome parasites

Jun 04, 2013
Drosophila Ovaries.

In the gonads of animals, genome parasites such as transposons pose a serious threat to evolutionary fitness. With their ability to bounce around in the genome, they often cause dangerous mutations. To protect genomic integrity, animals evolved a sophisticated mechanism – the so called piRNA pathway – to silence the deleterious transposons. Not much is known about the molecular processes and the involved factors that constitute the piRNA pathway. Researchers at the Institute of Molecular Biotechnology (IMBA) of the Austrian Academy of Sciences (ÖAW) in Vienna have now identified ~50 genes, that play important roles in the piRNA pathway of the fruitfly Drosophila melanogaster.

With roughly 50%, the human is densely populated with genome parasites, and so is the DNA of other animals, plants and fungi. Many of these selfish DNA elements are able to freely move around in the host's . They are referred to as transposons and their mobility causes and mutations that can lead to severe genome damage.

Although they are harmful, most organisms do not specifically eliminate transposons from their DNA. Such a massive intervention might bear too much of a risk for germ cell genomes and hence a species . To deal with the potential dangers, possess defense systems – also seen as sort of a 'genome immune system'. In all cases, these are based on small RNA silencing mechanisms and hence date probably back to the early days of eukaryotic evolution. The ancient silencing systems are able to selectively interfere with transposon expression preventing them from causing damage.

In animals, the most prominent of these silencing pathways is the so-called piRNA pathway. At its core act so-called RNA induced silencing complexes (RISC) that are composed of PIWI proteins bound to 22-30nt long piRNAs. Via the small RNA, PIWI complexes recognize transposon RNAs and this induces degradation of the transposon RNA and feeds back negatively on the encoding locus on the host DNA to inhibit transposon transcription.

Pioneering spirit at IMBA

The field of piRNA research is relatively young and only a handful of experts exist worldwide. One of them is the molecular biologist Julius Brennecke. Since 7 years the IMBA group leader is investigating transposon control mechanisms in Drosophila gonads. The fruitfly is one of the genetic workhorses of molecular geneticists and many aspects of piRNA biology have been pioneered in this model system. Brennecke's fascination for this system arose during his postdoctoral studies in the US: "This is one of the most ancient host-parasite conflicts and to understand it at the molecular and genetic level is simply fascinating".

With his transition to IMBA in Vienna, he managed to establish this highly competitive field in Austria. His work has a pioneering spirit, since the archaic piRNA-signalling pathway and his underlying mechanisms are still poorly understood. "We really want to know in detail, how the fly manages to keep transposons in check", says Brennecke.

With their recent work, Brennecke and his team made a major step forward in the dissection of the piRNA pathway. With a mix of genetic, molecular and computational methods the team performed a screen in the Drosophila ovary for factors involved in the piRNA pathway. All in all they examined 7,000 different genes and manually inspected around 60.000 fruitflies for defects in transposon silencing.

Fly library as goldmine of knowledge

For their screen, Brennecke and his group took advantage of the Vienna Drosophila RNAi Center (VDRC) library, a collection of ~30.000 fly stocks each allowing the silencing of a specific gene in a desired cell type. The VDRC library was established at the IMBA/IMP campus under leadership of Barry Dickson and Krystyna Keleman and is now run by the Campus Support Facility (CSF). From there, flies are sent out to institutes and research centers all over the globe. "The Vienna fly library is a worldwide unique resource that allows systematic studies of gene function in virtually every aspect of fruitfly biology", compliments Brennecke.

In their two years of work, Brennecke and his group discovered around 50 genes that are important for a fully functional piRNA pathway. Dominik Handler, PhD student in Brennecke's lab and first author of the study, explains: "For many of the identified genes, orthologous genes can be identified in the , too. Our results will therefore have a broad impact on the general understanding of this transposon silencing system." Some of the identified genes are required for the biogenesis of piRNAs, but others connect the defense system to basic processes such as mitochondria-metabolism, transport, transcription or chromatin-biology.

Signalling-pathway with great potential

The obtained results set the stage for multiple lines of future investigations, underlines Brennecke. The identified factors will play key roles in understanding the mechanistic framework of the pathway, but they will also be unique entry points into understanding how this silencing system is embedded into the general process of oogenesis. Key question along those lines are how piRNAs are passed from generation to generation and what evolutionary benefit the host might have from transposons. Brennecke is fascinated by the close interplay between possible advantages and dangers that transposons and other repetitive sequences have for host genome regulation. He is confident: "Core concepts of the piRNA pathway are highly conserved amongst organisms. I have no doubt, that our results will have far reaching implications for the understanding of genome evolution and possibly even aspects of human medicine."

Explore further: Studies generate comprehensive list of genes required by innate system to defend sex cells

More information: The Genetic Makeup of the Drosophila piRNA Pathway, Molecular Cell, Doi: 10.1016/j.molcel.2013.04.031

add to favorites email to friend print save as pdf

Related Stories

Researchers discover a new role for RNAi

Jun 26, 2012

Organisms employ a fascinating array of strategies to identify and restrain invasive pieces of foreign DNA, such as those introduced by viruses. For example, many viruses produce double-stranded (ds)RNA during their life ...

Gene invaders are stymied by a cell's genome defense

Feb 14, 2013

Gene wars rage inside our cells, with invading DNA regularly threatening to subvert our human blueprint. Now, building on Nobel-Prize-winning findings, UC San Francisco researchers have discovered a molecular machine that ...

Recommended for you

Building better soybeans for a hot, dry, hungry world

11 hours ago

(Phys.org) —A new study shows that soybean plants can be redesigned to increase crop yields while requiring less water and helping to offset greenhouse gas warming. The study is the first to demonstrate ...

Gene removal could have implications beyond plant science

11 hours ago

(Phys.org) —For thousands of years humans have been tinkering with plant genetics, even when they didn't realize that is what they were doing, in an effort to make stronger, healthier crops that endured climates better, ...

Chrono, the last piece of the circadian clock puzzle?

Apr 15, 2014

All organisms, from mammals to fungi, have daily cycles controlled by a tightly regulated internal clock, called the circadian clock. The whole-body circadian clock, influenced by the exposure to light, dictates the wake-sleep ...

User comments : 0

More news stories

Chimpanzees prefer firm, stable beds

Chimpanzees may select a certain type of wood, Ugandan Ironwood, over other options for its firm, stable, and resilient properties to make their bed, according to a study published April 16, 2014 in the open-access ...

For cells, internal stress leads to unique shapes

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

Down's chromosome cause genome-wide disruption

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.

Ebola virus in Africa outbreak is a new strain

The Ebola virus that has killed scores of people in Guinea this year is a new strain—evidence that the disease did not spread there from outbreaks in some other African nations, scientists report.