Genetic survey sheds light on Oceans' lean, mean microbial machines

Jun 24, 2013
Water and microbial samples being collected by UBC researchers along Line P, a 1,425 kilometer (885 mile) survey line in the Northeast subarctic Pacific Ocean, originating in the coastal fjord Saanich Inlet, British Columbia and terminating at Ocean Station Papa on the southeast edge of the Alaskan Gyre. For over 50 years, hydrographic data have been collected along Line P, making it one of the longest running time-series in the global ocean. Credit: Jody Wright, Kendra Moss (Hallam Lab, University of British Columbia).

Planktonic bacteria inhabiting the world's oceans have streamlined their genetic makeup to become lean, mean survival machines, according to new research by an international team of researchers, including microbiologists at the University of British Columbia.

The findings, published this week in the Proceedings of the National Academy of Sciences, is the first direct evidence of widespread genome reduction—organisms evolving to cast off superfluous genes and traits in favor of simpler, specialized genetic make-ups optimized for rapid growth.

"Microbes are the dominant form of life on the planet and comprise a huge proportion of the oceans' biomass, but we know next to nothing about how populations exist, evolve and interact outside of the lab," says UBC microbiologist Steven Hallam, Canada Research Chair in Environmental Genomics and author on the paper.

"This widespread, signal cell genome sequencing of in the surface ocean has uncovered a surprising amount of metabolic specialization. This tendency toward genome reduction has profound implications for how microbial communities develop metabolic interactions that couple nutrient and energy flow patterns in the ocean. It could be a matter of survival of the most connected."

Says Ramunas Stepanauskas, director of the Bigelow Single Cell Genomics Centre and the paper's lead author: "We found that natural bacterioplankton are devoid of 'genomic pork' such as and noncoding nucleotides, and utilize more diverse energy sources than previously thought."

Credits: Jody Wright, Kendra Moss (Hallam Lab, University of British Columbia).

Samples of planktonic bacteria were targeted from the , the Mediterranean, the South Atlantic and other sites. Data from northeast subarctic Pacific samples—taken over a six year period from the waters between Saanich Inlet and Ocean Station Papa along the Department of Fisheries and Oceans Line P transect was provided by Hallam's team.

Explore further: New study shows safer methods for stem cell culturing

More information: Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean, www.pnas.org/cgi/doi/10.1073/pnas.1304246110

Related Stories

Bigelow laboratory scientists doach to study marine microbes

May 21, 2007

In a paper published this month in the Proceedings of the National Academy of Sciences, Dr. Ramunas Stepanauskas and Dr. Michael Sieracki have proven a new method of identifying genetic codes of ocean microbes from a sing ...

Recommended for you

Malaria transmission linked to mosquitoes' sexual biology

11 hours ago

Sexual biology may be the key to uncovering why Anopheles mosquitoes are unique in their ability to transmit malaria to humans, according to researchers at Harvard T. H. Chan School of Public Health and University of Per ...

Intermediary neuron acts as synaptic cloaking device

13 hours ago

Neuroscientists believe that the connectome, a map of each and every connection between the millions of neurons in the brain, will provide a blueprint that will allow them to link brain anatomy to brain function. ...

Skeleton of cells controls cell multiplication

13 hours ago

A research team from Instituto Gulbenkian de Ciencia (IGC; Portugal), led by Florence Janody, in collaboration with Nicolas Tapon from London Research Institute (LRI; UK), discovered that the cell's skeleton ...

New study shows safer methods for stem cell culturing

Feb 25, 2015

A new study led by researchers at The Scripps Research Institute (TSRI) and the University of California (UC), San Diego School of Medicine shows that certain stem cell culture methods are associated with increased DNA mutations. ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.