Genetic switches play big role in human evolution

Jun 12, 2013 by Krishna Ramanujan
Genetic switches play big role in human evolution
A model of a transcription factor (orange and green) binding to a strand of DNA (light yellow). Transcription factors are proteins which bind to specific sequences of DNA, called binding sites, enabling and controlling the expression of genes. Changes during evolution to the DNA sequence in binding sites can lead to changes in gene expression. Credit: iStockphoto

(Phys.org) —A Cornell study offers further proof that the divergence of humans from chimpanzees some 4 million to 6 million years ago was profoundly influenced by mutations to DNA sequences that play roles in turning genes on and off.

The study, published June 9 in Nature Genetics, provides evidence for a 40-year-old hypothesis that regulation of genes must play an important role in evolution since there is little difference between humans and in the proteins produced by genes. Indeed, human and chimpanzee proteins are more than 99 percent identical.

The researchers showed that the number of to the part of the machinery that regulates genes, called transcription factor binding sites, may be roughly equal to adaptations to the genes themselves.

"This is the most comprehensive and most direct analysis to date of the evolution of gene in humans," said senior author Adam Siepel, Cornell associate professor of biological statistics and .

"It's taken these 40 years to get a clear picture of what's going on in these sequences because we haven't had the data until very recently," said Leonardo Arbiza, a postdoctoral researcher in Siepel's lab and the paper's lead author.

Less than 2 percent of the – the complete set of – contains genes that code for proteins. In cells, these proteins are instrumental in biological pathways that affect an organism's health, appearance and behavior.

Much less is known about the remaining 98 percent of the genome; however, in the 1960s, scientists recognized that some of the non-protein coding DNA regulates when and where genes are turned on and off and how much protein they produce. The regulatory machinery works when proteins called bind to specific short sequences of DNA that flank the gene, called transcription factor binding sites, and by doing so, switch genes on and off.

Among the findings, the study reports that when compared with protein coding genes, binding site DNA shows close to three times as many "weakly deleterious mutations," that is, mutations that may weaken or make an individual more susceptible to disease, but are generally not severe. Weakly deleterious mutations exist in low frequencies in a population and are eventually weeded out over time. These mutations are responsible for many inherited human diseases.

While genes generally tend to resist change, a mutation occasionally leads to a favorable trait and increases across a population; this is called positive selection. By contrast, "transcription factor binding sites show considerable amounts of positive selection," said Arbiza, with evidence for adaptation in binding sites that regulate genes controlling blood cells, brain function and immunity, among others.

"The overall picture shows more evolutionary flexibility in the binding sites than in protein coding genes," said Siepel. "This has important implications for how we think about human evolution and disease."

This is the one of the first studies to combine recent data that identifies transcription factor binding sites, data on human genetic variation and genome comparisons between humans and apes. A new computational method called INSIGHT (Inference of Natural Selection from Interspersed Genomically coHerent elemenTs), designed by Ilan Gronau, a postdoctoral researcher in Siepel's lab and a co-author of the study, allowed the scientists to integrate these diverse data types and find evidence of natural selection in the regulatory DNA.

"Transcription factor binding sites are probably the regulatory elements we know the most about," said Arbiza. "If you want to understand evolution of gene expression regulation, that's a good starting point."

INSIGHT may now be used by other researchers for analyzing other short regulatory , such as micro-RNAs, non-coding molecules that also play a role in gene regulation.

Explore further: Vermicompost leachate improves tomato seedling growth

More information: INSIGHT

Related Stories

Learning the alphabet of gene control

Jan 17, 2013

Scientists at Karolinska Institutet in Sweden have made a large step towards the understanding of how human genes are regulated. In a new study, published in the journal Cell, they identified the DNA sequences that bind t ...

1-D to 3-D genomics

Jun 11, 2013

(Phys.org) —Since his recent selection as an Alfred P. Sloan Research Fellow, Remo Rohs continues to demonstrate the research and creativity necessary to become a leader in the scientific community.

Recommended for you

Vermicompost leachate improves tomato seedling growth

Nov 21, 2014

Worldwide, drought conditions, extreme temperatures, and high soil saline content all have negative effects on tomato crops. These natural processes reduce soil nutrient content and lifespan, result in reduced plant growth ...

Plant immunity comes at a price

Nov 21, 2014

Plants are under permanent attack by a multitude of pathogens. To win the battle against fungi, bacteria, viruses and other pathogens, they have developed a complex and effective immune system. And just as ...

Evolution: The genetic connivances of digits and genitals

Nov 20, 2014

During the development of mammals, the growth and organization of digits are orchestrated by Hox genes, which are activated very early in precise regions of the embryo. These "architect genes" are themselves regulated by ...

Surrogate sushi: Japan biotech for bluefin tuna

Nov 20, 2014

Of all the overfished fish in the seas, luscious, fatty bluefin tuna are among the most threatened. Marine scientist Goro Yamazaki, who is known in this seaside community as "Young Mr. Fish," is working to ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.