Modeling galaxy mergers

Jun 03, 2013
An generated optical image of stars in a pair of colliding galaxies after a time of 0.5 billion years, as simulated with a new computer code. Credit: P. Hopkins

(Phys.org) —Astronomers think that many galaxies, including our own Milky Way, have undergone similar collisions during their lifetimes. Although galaxy collisions are important and common, what happens during these encounters is not very well understood. For example, it seems likely that massive black hole(s) will form during the interactions, as the two galaxies' nuclei approach each other. Galaxy-galaxy interactions also stimulate vigorous star formation as gravitational effects during the encounters induce interstellar gas to condense into stars. The starbursts in turn light up the galaxies, especially at infrared wavelengths, making some systems hundreds or even thousands of times brighter than the Milky Way while the starbursts are underway. Studying these luminous galaxies not only sheds light on how galaxies evolve and form stars, since they act as lanterns over cosmological distances it also helps scientists study the early universe.

All this impressive progress, however, hinges on an accurate understanding of mergers and how they work. The general approach is to study many local examples to categorize their behaviors, and then model these cases with computational codes that simulate mergers. The combination of precise observations and detailed modeling, iteratively applied, helps scientists improve both their understanding of the galaxies and the physical parameters and processes included in the modeling codes. With these in hand, astronomers can start to probe the more distant universe where the objects are not as easy to measure.

CfA astronomer Lars Hernquist and five of his colleagues (many of whom were his past students) have now shown that feedback processes from bursts of star formation play a key role in determining how merging galaxies develop, at least when two collide. Prior models did not fully account for the role played by gas that is driven away by the radiation from a star burst, but which can sometimes fall back the galaxy. The new paper is particularly effective in describing star formation in the tails and bridges of interacting systems, something had previously been lacking.

Explore further: Planets with oddball orbits like Mercury could host life

add to favorites email to friend print save as pdf

Related Stories

Galaxy collisions

Apr 09, 2013

Collisions between galaxies are common. Indeed, most galaxies have probably been involved in one or more encounters during their lifetimes. One example is our own Milky Way, which is bound by gravity to the ...

Image: Hubble sees a swirl of star formation

May 27, 2013

(Phys.org) —This beautiful, glittering swirl is named, rather un-poetically, J125013.50+073441.5. A glowing haze of material seems to engulf the galaxy, stretching out into space in different directions ...

Twists and turns in interacting galaxies

Oct 08, 2012

(Phys.org)—Almost thirty years ago the Infrared Astronomy Satellite, IRAS, discovered that the universe contained many fabulously luminous galaxies, some of them more than a thousand times brighter than ...

Hubble catches the moment the lights went out

Feb 06, 2013

(Phys.org)—The further away you look, the further back in time you see. Astronomers use this fact to study the evolution of the Universe by looking at nearby and more distant galaxies and comparing their ...

Galaxies the way they were

Apr 03, 2013

(Phys.org) —Galaxies today come very roughly in two types: reddish, elliptically shaped collections of older stars, and bluer, spiral shaped objects dominated by young stars. The conventional wisdom is ...

Recommended for you

The entropy of black holes

Sep 12, 2014

Yesterday I talked about black hole thermodynamics, specifically how you can write the laws of thermodynamics as laws about black holes. Central to the idea of thermodynamics is the property of entropy, which c ...

Modified theory of dark matter

Sep 12, 2014

Dark matter is an aspect of the universe we still don't fully understand. We have lots of evidence pointing to its existence (as I outlined in a series of posts a while back), and the best evidence we have point ...

Gaia discovers its first supernova

Sep 12, 2014

(Phys.org) —While scanning the sky to measure the positions and movements of stars in our Galaxy, Gaia has discovered its first stellar explosion in another galaxy far, far away.

Astronomers unveil secrets of giant elliptical galaxies

Sep 12, 2014

New findings of how giant elliptical galaxies move have been discovered by an international team of astronomers using the newly installed Multi Unit Spectroscopic Explorer (MUSE) at the European Southern Observatory's (ESO) ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

cantdrive85
1 / 5 (4) Jun 03, 2013
More hot gas!