Decoding the oceans (w/ Video)

June 27, 2013

Marine genomics has the power to reveal the many undiscovered secrets of the oceans. The Oceans are filled with a diversity of life forms. This means that getting a complete picture of marine biodiversity is challenging. Now, researchers are exploring new ways of identifying organisms—particularly invasive species—in sea water, as well as monitoring how marine life changes and exploring how we could benefit from this knowledge.

Among those involved are , who routinely board research vessels to collect plankton samples, for example, along the Swedish West coast. Historically they would return with the samples and look at individual organisms under the microscope, trying to identify every single organism on their search for . This is a very difficult task when organisms are in their early life stage and difficult to distinguish. "Invasive species have caused a lot of problems in the last twenty years and they will cause more problems in the future", says Matthias Obst, marine scientist from the University of Gothenburg, Sweden. "So we need to find methods to understand the dynamics of invasive species. And here genomic methods are very powerful."

Today, microscopes stay on the shelf, as Matthias Obst now starts to look at the genetic make-up of his samples through mass-sequencing. This method makes the identification of underwater wildlife not only easier and more accurate, but also much more efficient. Scientists have been decoding the oceans for a number of years, gaining a significant amount of knowledge that could be very useful beyond the scientific community.

The video will load shortly

Specifically, researchers are interested in making this data available to industry and to environment agencies so that society can benefit from the rich gene diversity of marine life. This has been made possible by the EU funded research project Marine Genomics for Users (MG4U), designed to raise the profile of marine genomic technologies and make them available for potential applications in fields as varied as in medical research, nutrition and cosmetic products.

Explore further: TARA OCEANS completes 60,000-mile journey to map marine biodiversity

Related Stories

New DNA-method tracks fish and whales in seawater

August 30, 2012

Danish researchers at University of Copenhagen lead the way for future monitoring of marine biodiversity and resources. By using DNA traces in seawater samples to keep track of fish and whales in the oceans. A half litre ...

Recommended for you

Rare evolutionary event detected in the lab

May 23, 2016

It took nearly a half trillion tries before researchers at The University of Texas at Austin witnessed a rare event and perhaps solved an evolutionary puzzle about how introns, non-coding sequences of DNA located within genes, ...

Chloride 'switch' turns on membrane formation

May 23, 2016

Chloride plays a key role in the formation of the basement membrane, a suprastructure on the outside of cells that undergirds and guides the function of most of the tissues of the body.

Networking lets sharks off the hook

May 23, 2016

Tuna fishers who network with their competition may be able to stop thousands of sharks a year from being accidentally captured and killed in the Pacific Ocean.

In changing oceans, cephalopods are booming

May 23, 2016

Humans have changed the world's oceans in ways that have been devastating to many marine species. But, according to new evidence, it appears that the change has so far been good for cephalopods, the group including octopuses, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.